ORTHOGONALITY OF COSETS RELATIVE TO IRREDUCIBLE CHARACTERS OF FINITE GROUPS

RANDALL R. HOLMES

ABSTRACT. Studied is an assumption on a group that ensures that no matter how the group is embedded in a symmetric group, the corresponding symmetrized tensor space has an orthogonal basis of standard (decomposable) symmetrized tensors.

0. INTRODUCTION

Let V be a complex inner product space and let G be a subgroup of the symmetric group S_n for some n. Corresponding to an irreducible character of G is a symmetrizer, a certain endomorphism of the n-fold tensor space $V^{\otimes n}$. The image under a symmetrizer of a standard basis vector of $V^{\otimes n}$ is called a standard (or decomposable) symmetrized tensor.

We seek conditions under which $V^{\otimes n}$ will have an orthogonal basis consisting entirely of standard symmetrized tensors (such a basis being called an *o-basis* for brevity). The problem of finding such conditions was first considered by Wang and Gong in [WG] where it was shown that if G is the dihedral group of order eight (viewed naturally as a subgroup of S_4), then $V^{\otimes 4}$ has an o-basis. In subsequent work [HT], Tam and the author showed that more generally if G is a dihedral group of order a power of two, then the corresponding tensor space has on o-basis. Moreover, it was noted there that this fact is independent of the particular embedding of the dihedral group inside the symmetric group. So, for instance, an o-basis exists for $V^{\otimes n}$ where n is the order of the dihedral group (still assumed to be a power of two) and the embedding is the one given by Cayley's Theorem.

Motivated by this example, we give in this paper conditions on a finite group ensuring that, regardless of how it is embedded in a symmetric group, the corresponding tensor space will have an o-basis. We call a group satisfying this condition an *o-basis group*.

In Section 1, we state the definition of an o-basis group and establish some properties. In Section 2, we review more carefully the notion of an o-basis of a tensor space and then give connections between this notion and that of an o-basis group. Finally, we show in Section 3 that the class of o-basis groups contains some interesting groups—the extra special p-groups (p, prime), for example.

1. Main definition and some properties

Let G be a finite group and let H be a subgroup of G. Denote by G/H the set of (left) cosets of H in G. The natural left action of G on the set G/H extends linearly to the complex vector space having this set as basis, which we denote by $\mathbf{C}(G/H)$.

Let $\operatorname{Irr}(G)$ denote the set of irreducible characters of G. Let $\chi \in \operatorname{Irr}(G)$. Define a form B_H^{χ} on $\mathbf{C}(G/H)$ by putting

$$B_H^{\chi}(aH, bH) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(a^{-1}bh)$$

Typeset by \mathcal{AMS} -TEX

¹⁹⁹¹ Mathematics Subject Classification. Primary 20C15 Secondary 20C30, 20B20.

(where e is the identity element of G) and extending linearly in the first component and antilinearly in the second.

1.1 Proposition. B_H^{χ} is a well-defined G-invariant Hermitian form.

Proof. First note that since χ is conjugation invariant [I, (2.3), p. 14], we have $\chi(ga) = \chi(g^{-1}gag) = \chi(ag)$ for all $a, g \in G$.

Suppose $a_1H = aH$ and $b_1H = bH$ so that $a_1 = ax$ and $b_1 = by$ for some $x, y \in H$. Then for each $h \in H$,

$$\chi(a_1^{-1}b_1h) = \chi(x^{-1}a^{-1}byh) = \chi(a^{-1}byhx^{-1})$$

As h ranges through H, yhx^{-1} also ranges through H, so $B_H^{\chi}(a_1H, b_1H) = B_H^{\chi}(aH, bH)$ and B_H^{χ} is well-defined.

To say that B_H^{χ} is G-invariant is to say that $B_H^{\chi}(caH, cbH) = B_H^{\chi}(aH, bH)$ for all $a, b, c \in G$ and this is clear.

Finally,

$$\begin{split} B_H^{\chi}(bH, aH) &= \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(b^{-1}ah) = \frac{\chi(e)}{|H|} \sum_{h \in H} \overline{\chi(h^{-1}a^{-1}b)} \\ &= \frac{\chi(e)}{|H|} \sum_{h \in H} \overline{\chi(a^{-1}bh^{-1})} = \overline{B_H^{\chi}(aH, bH)} \end{split}$$

 $(a, b \in G)$, where we have used that $\overline{\chi(g)} = \chi(g^{-1})$ for $g \in G$ [I, (2.15), p. 20]. Therefore, B_H^{χ} is Hermitian. \Box

Put $\mathcal{C}_{H}^{\chi} := \mathbf{C}(G/H)/\ker B_{H}^{\chi}$, where $\ker B_{H}^{\chi} := \{x \in \mathbf{C}(G/H) : B_{H}^{\chi}(x,y) = 0 \text{ for all } y \in \mathbf{C}(G/H)\}$. Then B_{H}^{χ} induces a well-defined form \bar{B}_{H}^{χ} on \mathcal{C}_{H}^{χ} given by $\bar{B}_{H}^{\chi}(\bar{x},\bar{y}) = B_{H}^{\chi}(x,y)$ $(x,y \in \mathbf{C}(G/H))$, where here and below we use \bar{x} to denote the coset $x + \ker B_{H}^{\chi}$ (context should keep any confusion from arising over this notation and the usual notation for complex conjugate which we also use). By 1.1, $\ker B_{H}^{\chi}$ is closed under the action of G and so we have a well-defined action of G on \mathcal{C}_{H}^{χ} . Clearly, \bar{B}_{H}^{χ} is G-invariant.

For characters ψ and φ of G, one defines $(\psi, \varphi)_H = \frac{1}{|H|} \sum_{h \in H} \psi(h) \overline{\varphi(h)}$ [I, (2.16), p. 20]. We denote the principal character of G by 1 (so 1(g) = 1 for all $g \in G$).

1.2 Theorem.

- (1) dim_C $\mathcal{C}_{H}^{\chi} = \chi(e)(\chi, 1)_{H}.$
- (2) The form \bar{B}_{H}^{χ} is positive definite.

Proof. Let a_1H, \ldots, a_nH be the distinct left cosets of H in G. Then $\{a_iH : 1 \le i \le n\}$ is a basis for $\mathbb{C}(G/H)$. Let A be the $n \times n$ -matrix with (i, j)-entry $B_H^{\chi}(a_iH, a_jH)/|G : H|$, where |G : H| is the index of H in G. (So A is $|G : H|^{-1}$ times the matrix of the form B_H^{χ} relative to the above basis.) We claim that $A^2 = A$. The (i, j)-entry of A^2 is

$$\begin{split} |G:H|^{-2} \sum_{k=1}^{n} B_{H}^{\chi}(a_{i}H, a_{k}H) B_{h}^{\chi}(a_{k}H, a_{j}H) &= \frac{\chi(e)^{2}}{|G|^{2}} \sum_{k=1}^{n} \left(\sum_{h \in H} \chi(a_{i}^{-1}a_{k}h) \right) \left(\sum_{l \in H} \chi(a_{k}^{-1}a_{j}l) \right) \\ &= \frac{\chi(e)^{2}}{|G|^{2}} \sum_{l \in H} \sum_{\substack{h \in H \\ 1 \leq k \leq n}} \chi(a_{k}ha_{i}^{-1}) \chi(a_{j}lh^{-1}a_{k}^{-1}). \end{split}$$

Replacing $a_i h^{-1} a_k^{-1}$ with g we have $\chi(a_j l h^{-1} a_k^{-1}) = \chi(a_j l a_i^{-1} g) = \chi(g a_j l a_i^{-1})$, so the expression above becomes

$$\frac{\chi(e)^2}{|G|^2} \sum_{l \in H} \sum_{g \in G} \chi(g^{-1}) \chi(ga_j la_i^{-1}) = \frac{\chi(e)}{|G|} \sum_{l \in H} \chi(a_j la_i^{-1})$$

using the Generalized Orthogonality Relation [I, p. 19, (2.13)]. Since $\chi(a_j l a_i^{-1}) = \chi(a_i^{-1} a_j l)$, this last expression is $B_H^{\chi}(a_i H, a_j H)/|G:H|$, which is the (i, j)-entry of A. Thus, $A^2 = A$ as claimed.

Now A is Hermitian by 1.1, so it is similar to a diagonal matrix with the eigenvalues of A along the main diagonal. But since $A^2 = A$, an eigenvalue of A is either 1 or 0. Hence, the rank of A is equal to the trace of A. But

$$\operatorname{tr} A = \frac{1}{|G:H|} \sum_{i=1}^{n} B_{H}^{\chi}(a_{i}H, a_{i}H) = \frac{\chi(e)}{|G|} \sum_{i=1}^{n} \sum_{h \in H} \chi(h) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(h) = \chi(e)(\chi, 1)_{H}$$

Since $\dim_{\mathbf{C}} \mathcal{C}_{H}^{\chi} = \operatorname{rank} A$, (1) follows.

Finally, by the preceding paragraph, the form B_H^{χ} on $\mathbf{C}(G/H)$ is positive semidefinite, so that the induced form \bar{B}_H^{χ} on \mathcal{C}_H^{χ} is positive definite. This proves (2). \Box

We shall call G an *o*-basis group if for every $H \leq G$ and $\chi \in Irr(G)$ the vector space \mathcal{C}_{H}^{χ} has a basis that is orthogonal relative to \bar{B}_{H}^{χ} consisting entirely of elements of the form \overline{aH} $(a \in G)$. Such a basis shall be called an *o*-basis of \mathcal{C}_{H}^{χ} .

1.3 Corollary. The following are equivalent:

- (1) G is an o-basis group.
- (2) For each $H \leq G$ and each $\chi \in Irr(G)$, there exist at least $\chi(e)(\chi, 1)_H$ cosets of H in G that are mutually orthogonal relative to B_H^{χ} .
- (3) For each $H \leq G$ and each nonlinear $\chi \in \operatorname{Irr}(G)$ with $(\chi, 1)_H \neq 0$, there exist at least $\chi(e)(\chi, 1)_H$ cosets of H in G that are mutually orthogonal relative to B_H^{χ} .

Proof. We first observe that for every $a, b \in G$,

$$\bar{B}_{H}^{\chi}(\overline{aH},\overline{bH}) = B_{H}^{\chi}(aH,bH)$$

so that \overline{aH} and \overline{bH} are orthogonal relative to \overline{B}_{H}^{χ} if and only if aH and bH are orthogonal relative to B_{H}^{χ} .

Assume that G is an o-basis group and let $H \leq G$ and $\chi \in \operatorname{Irr}(G)$. There exists an o-basis $\{\overline{a_1H}, \ldots, \overline{a_tH}\}$ (possibly empty with t = 0) of \mathcal{C}_H^{χ} . By 1.2, $t = \chi(e)(\chi, 1)_H$ and, by the above argument, a_1H, \ldots, a_tH are mutually orthogonal relative to B_H^{χ} . This shows that (1) implies (2). That (2) implies (3) is obvious.

Finally, assume (3) holds. Let $H \leq G$ and $\chi \in \operatorname{Irr}(G)$. If $(\chi, 1)_H = 0$, then dim $\mathcal{C}_H^{\chi} = 0$, so the empty set is an o-basis of \mathcal{C}_H^{χ} . Assume that $(\chi, 1)_H \neq 0$. Note that, in particular,

$$\bar{B}^{\chi}_{H}(\overline{aH},\overline{aH}) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(h) = \chi(e)(\chi,1)_{H} \neq 0$$

so that $\overline{aH} \neq 0$ for all $a \in G$. If χ is linear, then dim $\mathcal{C}_{H}^{\chi} = 1$, so $\{\overline{H}\}$ is an o-basis of \mathcal{C}_{H}^{χ} . Assume that χ is nonlinear. By assumption, there exist $t = \chi(e)(\chi, 1)_{H}$ cosets $a_{1}H, \ldots, a_{t}H$ that are mutually orthogonal relative to B_{H}^{χ} . Then $\{\overline{a_{1}H}, \ldots, \overline{a_{t}H}\}$ is orthogonal relative to \overline{B}_{H}^{χ} and, since $\overline{a_{i}H} \neq 0$ for each i, this set is linearly independent and hence an o-basis of \mathcal{C}_{H}^{χ} (using 1.2). \Box

Remarks. (1) Since the irreducible characters of an abelian group are all linear, it follows vacuously from condition (3) of 1.3 that every abelian group is an o-basis group.

(2) In view of 1.3, the proof of Theorem 3.1 in [HT] shows that if G is a dihedral group of order 2^k ($k \ge 0$), then G is an o-basis group. (See also [HT, Remark 2, p. 27].) We shall recover this result as a special case of 3.1 below.

1.4 Proposition. Let G be an o-basis group. For each $H \leq G$ and $\chi \in Irr(G)$ there exist at least $\chi(e)(\chi, 1)_H - 1$ cosets aH for which $\sum_{h \in H} \chi(ah) = 0$. In particular, each $\chi \in Irr(G)$ has at least $\chi(e)^2 - 1$ zeros.

Proof. Let $H \leq G$ and $\chi \in Irr(G)$. If $(\chi, 1)_H = 0$, then the claim is vacuously satisfied, so assume $(\chi, 1)_H \neq 0$. By assumption and 1.3 there exist $t = \chi(e)(\chi, 1)_H$ cosets a_1H, \ldots, a_tH that are mutually orthogonal relative to B_H^{χ} . By the *G*-invariance of B_H^{χ} (1.1), we may assume that $a_1 = e$. For each $1 < i \leq t$ we have

$$0 = B_H^{\chi}(a_1H, a_iH) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(a_ih)$$

and this proves the first statement. The second statement follows by letting $H = \{e\}$. \Box

In the remainder of this section, we study the o-basis group property as it relates to homomorphic images.

Let $N \triangleleft G$, let $\chi \in \operatorname{Irr}(G)$ and assume that $N \subseteq \ker \chi$. Put $\hat{G} := G/N$ and denote by \hat{a} the image of $a \in G$ under the canonical epimorphism $G \to \hat{G}$. The function $\hat{\chi} : \hat{G} \to \mathbb{C}$ given by $\hat{\chi}(\hat{a}) = \chi(a)$ is a well-defined irreducible character of \hat{G} [I, (2.22), p. 24]. Let H be a subgroup of G.

1.5 Proposition. Let the notation be as above. The linear map $\varphi : \mathcal{C}_{H}^{\chi} \to \mathcal{C}_{\hat{H}}^{\hat{\chi}}$ given by $\varphi(\overline{aH}) = \hat{a}\hat{H}$ is a well-defined linear isometry. In particular, \mathcal{C}_{H}^{χ} has an o-basis if and only if $\mathcal{C}_{\hat{H}}^{\hat{\chi}}$ has an o-basis.

Proof. Put $I = H \cap N$ and let h_1I, \ldots, h_nI be the distinct elements of H/I. By an isomorphism theorem, $\hat{H} \cong H/I$ and $\hat{h}_1, \ldots, \hat{h}_n$ are the distinct elements of \hat{H} .

Let $a, b \in G$. Using that χ is constant on each coset of I, we get

$$B_{H}^{\chi}(aH, bH) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(a^{-1}bh) = \frac{\chi(e)}{|H|} \sum_{i=1}^{n} \chi(a^{-1}bh_{i})$$
$$= \frac{\hat{\chi}(\hat{e})}{|\hat{H}|} \sum_{i=1}^{n} \hat{\chi}(\hat{a}^{-1}\hat{b}\hat{h}_{i}) = B_{\hat{H}}^{\hat{\chi}}(\hat{a}\hat{H}, \hat{b}\hat{H}).$$

In particular, the linear map $\mathbf{C}(G/H) \to \mathbf{C}(\hat{G}/\hat{H})$ given by $aH \mapsto \hat{a}\hat{H}$ sends the kernel of B_H^{χ} into the kernel of $B_{\hat{H}}^{\hat{\chi}}$ so that φ is well-defined. Clearly φ is surjective. Finally, if $x \in \ker \varphi$, then

$$\bar{B}_{\hat{H}}^{\chi}(x,x) = \bar{B}_{\hat{H}}^{\hat{\chi}}(\varphi(x),\varphi(x)) = 0,$$

so that x = 0 since \bar{B}_H^{χ} is definite (1.2). It follows that φ is injective. \Box

1.6 Corollary. The class of o-basis groups is closed under taking homomorphic images.

Proof. Let G be an o-basis group and let N be a normal subgroup of G. By the First Isomorphism Theorem it suffices to show that $\hat{G} := G/N$ is an o-basis group.

Let $\hat{H} \leq \hat{G}$ and let $\hat{\chi} \in \operatorname{Irr}(\hat{G})$. With $\chi: G \to \mathbb{C}$ defined by $\chi(a) = \hat{\chi}(aN)$, we have $\chi \in \operatorname{Irr}(G)$ and $N \subseteq \ker \chi$. Also, $\hat{H} = H/N$ for some $H \leq G$ (with $H \supseteq N$). By assumption, \mathcal{C}_{H}^{χ} has an o-basis, so $\mathcal{C}_{\hat{H}}^{\hat{\chi}}$ has an o-basis as well by 1.5. \Box

ORTHOGONALITY OF COSETS

2. Orthogonal bases of symmetrized tensor spaces

In this section, we study connections between the notion of an o-basis group and the existence of special bases (called o-bases) of symmetrized tensor spaces.

Fix positive integers m and n and put $\Gamma_{n,m} = \{\gamma \in \mathbb{Z}^n : 1 \leq \gamma_i \leq m\}$. Let G be a subgroup of the symmetric group S_n . There is a right action of G on $\Gamma_{n,m}$ given by $\gamma \sigma = (\gamma_{\sigma(1)}, \ldots, \gamma_{\sigma(n)})$ $(\gamma \in \Gamma_{n,m}, \sigma \in G)$.

Let V be a complex inner product space of dimension m and let $\{e_1, \ldots, e_m\}$ be an orthonormal basis of V. To avoid trivialities, we assume that $m \ge 2$. Denote by $V^{\otimes n}$ the *n*-fold tensor power of V. For $\gamma \in \Gamma_{n,m}$, put $e_{\gamma} := e_{\gamma_1} \otimes \cdots \otimes e_{\gamma_n} \in V^{\otimes n}$. Then $\{e_{\gamma} : \gamma \in \Gamma_{n,m}\}$ is a basis for $V^{\otimes n}$.

Let $\chi \in \operatorname{Irr}(G)$. The symmetrizer relative to χ is the element of the group algebra $\mathbb{C}G$ of G given by $s^{\chi} := \frac{\chi(e)}{|G|} \sum_{\sigma \in G} \chi(\sigma) \sigma$. For $\gamma \in \Gamma_{n,m}$, put $e^{\chi}_{\gamma} := s^{\chi} e_{\gamma}$, where we view $V^{\otimes n}$ as a left $\mathbb{C}G$ -module via $\sigma e_{\gamma} = e_{\gamma\sigma^{-1}}$ ($\sigma \in G$). We shall refer to e^{χ}_{γ} as a standard symmetrized tensor (some authors use the term decomposable tensor).

The inner product on V induces an inner product on $V^{\otimes n}$. If W is a subspace of $V^{\otimes n}$ then an orthogonal basis of W consisting entirely of standard symmetrized tensors shall be called an *o*-basis of W (relative to G).

Choose a set \triangle of representatives of the orbits of $\Gamma_{n,m}$ under the right action of G given above. Then $V^{\otimes n} = \bigoplus V_{\gamma}^{\chi}$ (orthogonal direct sum), where $V_{\gamma}^{\chi} := \langle e_{\gamma\sigma}^{\chi} : \sigma \in G \rangle$ and the sum is over all $\chi \in \operatorname{Irr}(G), \gamma \in \triangle$ (cf. [F], [M]).

2.1 Theorem. If G is an o-basis group and $\varphi : G \to S_n$ $(n \in \mathbf{N})$ is a homomorphism, then $V^{\otimes n}$ has an o-basis relative to $\varphi(G)$.

Proof. Let G be an o-basis group and let $\varphi: G \to S_n$ $(n \in \mathbf{N})$ be a homomorphism. Put $J = \varphi(G)$ and fix $\psi \in \operatorname{Irr}(J)$ and $\gamma \in \Gamma_{n,m}$. It is enough to show that V_{γ}^{ψ} has an o-basis (relative to J). Set $H = \varphi^{-1}(J_{\gamma})$, where J_{γ} is the stabilizer of γ under the right action of J on $\Gamma_{n,m}$. Also, put $\chi = \psi \circ \varphi \in \operatorname{Irr}(G)$. By the definition of o-basis group, \mathcal{C}_H^{χ} has an o-basis $\{\overline{a_1H}, \ldots, \overline{a_tH}\}$ and by $1.2, t = \chi(e)(\chi, 1)_H$. Put $\theta_i = \varphi(a_i)^{-1}$. We claim that $\{e_{\gamma\theta_i}^{\psi}: 1 \leq i \leq t\}$ is an o-basis of V_{γ}^{ψ} . For $1 \leq i, j \leq t$, we have

$$\bar{B}_{H}^{\chi}(\overline{a_{i}H},\overline{a_{j}H}) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(a_{i}^{-1}a_{j}h) = \frac{\psi(e)}{|J_{\gamma}|} \sum_{\sigma \in J_{\gamma}} \psi(\theta_{i}\theta_{j}^{-1}\sigma) = (e_{\gamma\theta_{i}\theta_{j}^{-1}}^{\psi}, e_{\gamma}^{\psi}) = (e_{\gamma\theta_{i}}^{\psi}, e_{\gamma\theta_{j}}^{\psi}),$$

where the next to the last equality is from [F, p. 339]. The equation above with j = i shows that each $e_{\gamma\theta_i}^{\psi}$ is nonzero (using definiteness of \bar{B}_H^{χ} (1.2)). On the other hand, the equation above with $j \neq i$ shows that the vectors $e_{\gamma\theta_i}^{\psi}$ are mutually orthogonal. In particular, the set $\{e_{\gamma\theta_i}^{\psi}: 1 \leq i \leq t\}$ is linearly independent. Also, by [F, p. 339],

$$\dim_{\mathbf{C}} V_{\gamma}^{\psi} = \frac{\psi(e)}{|J_{\gamma}|} \sum_{\sigma \in J_{\gamma}} \psi(\sigma) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(h) = \chi(e)(\chi, 1)_H = t,$$

so the theorem follows. $\hfill\square$

2.2 Corollary. The following groups are not o-basis groups:

- (1) any dihedral group D_n (of order 2n) with n not a power of 2,
- (2) any 2-transitive subgroup of S_n with $n \ge 3$ (e.g., the alternating group A_n , $n \ge 4$ and the symmetric group S_n , $n \ge 3$),
- (3) any finite simple group of Lie type.

Proof. Let G be one of the groups in the list above. In view of 2.1, it is enough to find a homomorphism $\varphi: G \to S_n$ for some n such that $V^{\otimes n}$ does not have an o-basis relative to $\varphi(G)$.

Case (1) is given in [HT, Corollary 3.3, p. 27] with $\varphi : D_n \to S_n$ the natural embedding, case (2) is given in [H, Theorem, p. 242] with $\varphi : G \to S_n$ the inclusion map, and case (3) is given in [A, Theorem 5.1, p. 428] with $\varphi : G \to S_n$ the embedding induced by the natural action of G on G/B, where B is a Borel subgroup and n = |G : B|. \Box

The converse of 2.1 does not hold in general since it is possible to have a group homomorphism $\varphi: G \to S_n$ such that $V^{\otimes n}$ has an o-basis relative to $\varphi(G)$ with G not an o-basis group. (Indeed, one can let G be any of the groups in 2.2 and let $\varphi: G \to S_n$ (any n) be the trivial homomorphism. Then the identity map on $V^{\otimes n}$ is the sole symmetrizer and $\{e_{\gamma}: \gamma \in \Gamma_{n,m}\}$ is an o-basis of $V^{\otimes n}$ relative to $\varphi(G) = \{e\}$.) However, the next theorem provides a characterization of o-basis group expressed in terms of symmetrized tensors. In its statement, the Cayley embedding $\varphi: G \to S_n$ is the homomorphism that takes $g \in G$ to the permutation $\varphi(g)$ on G given by $\varphi(g)(h) = gh$ $(h \in G)$, this permutation being viewed as an element of S_n , where n = |G|.

2.3 Theorem. Let G be a finite group, let n = |G|, and let $\varphi : G \to S_n$ be the Cayley embedding. Then G is an o-basis group if and only if $V^{\otimes n}$ has an o-basis relative to $\varphi(G)$.

Proof. One implication follows from 2.1. Now assume that $V^{\otimes n}$ has an o-basis relative to $\varphi(G)$. Fix $H \leq G$ and $\chi \in Irr(G)$. We view $\Gamma_{n,m}$ as the set of functions from G to $\{1, \ldots, m\}$ using the same one-to-one correspondence $G \to \{1, \ldots, n\}$ by which we identify the symmetric group on G with S_n . Define $\gamma \in \Gamma_{n,m}$ by

$$\gamma_g = \begin{cases} 1, & \text{if } g \in H, \\ 2, & \text{if } g \notin H. \end{cases}$$

Then clearly the stabilizer of γ in G is H. Put $\psi = \chi \circ \varphi^{-1}|_{\varphi(G)} \in \operatorname{Irr}(\varphi(G))$. By assumption (and the orthogonal direct sum decomposition given before 2.1), V_{γ}^{ψ} has an o-basis, that is, there exist $g_1, \ldots, g_t \in G$ with $t = \dim_{\mathbb{C}} V_{\gamma}^{\psi}$ such that $\{e_{\gamma\varphi(g_i)}^{\psi} : 1 \leq i \leq t\}$ is an orthogonal basis of V_{γ}^{χ} . The computations in the proof of 2.1 show that for $1 \leq i, j \leq t$, $\overline{B}_H^{\chi}(\overline{g_i^{-1}H}, \overline{g_j^{-1}H}) = (e_{\gamma\varphi(g_i)}^{\psi}, e_{\gamma\varphi(g_i)}^{\psi})$ and that $\dim_{\mathbb{C}} V_{\gamma}^{\psi} = \chi(e)(\chi, 1)_H$, so, arguing as in that same proof and in view of 1.2 $\{\overline{g_i^{-1}H} : 1 \leq i \leq t\}$ is an o-basis of \mathcal{C}_H^{χ} . \Box

3. A sufficient condition and examples

In the first theorem of this section we consider a certain class of *p*-groups and show that its members are o-basis groups. This theorem is used in 3.2 to provide a list of familiar groups that are o-basis groups.

3.1 Theorem. Let G be a finite p-group (p, prime) and assume that G has an abelian normal subgroup A and a cyclic normal subgroup C with $C \subseteq A$ satisfying $|G:A| \leq p$ and $|A:C| \leq p$. Then G is an o-basis group.

Proof. We verify the characterization of o-basis group given in 1.3. Let $H \leq G$ and $\chi \in Irr(G)$ with χ nonlinear and $(\chi, 1)_H \neq 0$. Note that since χ is nonlinear, G is nonabelian so that $|G| > p^2$ and $C \neq \{e\}$. A quotient of G clearly satisfies the hypotheses of the theorem so we assume, without loss of generality in view of 1.5, that χ is faithful.

We claim that $H \cap C = \{e\}$. Let $J = H \cap C$. Now J is a characteristic subgroup of C (as is any subgroup of C since C is cyclic) and C is a normal subgroup of G. Hence, J is a normal subgroup of G. Since $(\chi, 1)_H \neq 0$, it follows that $(\chi, 1)_J \neq 0$. Then [I, (6.7), p. 81] says that $J \subseteq \ker \chi = \{e\}$. Thus $H \cap C = \{e\}$, as claimed.

We now claim that |H| is either 1 or p. Since $H \cap C = \{e\}$, we have $|H||C| = |HC| \leq |G|$. Now $|C| = |G|/|G : C| \geq |G|/p^2$, so $|H| \leq p^2$. Moreover, |H| divides |G| which is a power of p, so $|H| \in \{1, p, p^2\}$. Suppose that $|H| = p^2$. Then |G : A| = p = |A : C|. In particular, $|H \cap A| = p$ so that $H \cap A = \langle h \rangle$ for some $h \in H$. Moreover, $H \not\subseteq A$ so there exists some $x \in H - A$. Then clearly $G = \langle C, h, x \rangle$. Now H is abelian since it has order p^2 , so it follows that h is in the center Z(G) of G. Now G acts by conjugation on C and hence fixes a nonidentity element c of C [Hu, Lemma 5.1, p. 93]. Thus Z(G) contains $\langle c \rangle \times \langle h \rangle$. But this contradicts that Z(G) is cyclic since χ is faithful [I, (2.32), p. 29]. We conclude that |H| is either 1 or p, as claimed.

By Ito's Theorem [I, (6.15), p. 84], $\chi(e)$ divides |G:A| which is either 1 or p. We are assuming that χ is nonlinear, so we have $\chi(e) = p$ and |G:A| = p. Let λ be an irreducible constituent of χ_A . Since A is abelian, we have $\lambda(e) = 1$. Frobenius Reciprocity gives $(\chi, \lambda^G)_G = (\chi, \lambda)_A \ge 1$. Since χ and λ^G both have degree p, we conclude that $\chi = \lambda^G$.

For later use, we observe that λ_C is faithful. Indeed, ker λ_C is a characteristic subgroup of C and hence a normal subgroup of G so that

$$\ker \lambda_C = \bigcap_{x \in G} (\ker \lambda_C)^x \subseteq \bigcap_{x \in G} (\ker \lambda)^x = \ker \lambda^G = \ker \chi = \{e\}$$

using [I, (5.11), p. 67] and the fact that χ is faithful.

Let $N = C \cap Z(G)$. Assume for the moment that $N \neq C$. The conjugation action of G on C induces a well-defined action of G on C/N given by $(cN)^x = c^x N$ for $c \in C$, $x \in G$. According to [Hu, Theorem 5.2, p. 93], this action fixes the elements of a subgroup of order p, which can be expressed in the form D/N with D a subgroup of C containing N.

So far, D is defined if $N \neq C$. If N = C, put D = A and note that $C \neq A$, for otherwise, N = A and the inertia subgroup of λ is G, contradicting that $\lambda^G = \chi$ is irreducible by [I, (6.1), p. 95]. We have that D is a normal subgroup of G and |D:N| = p.

We claim that $\chi_D = \sum_{i=0}^{p-1} \eta_i$, with the η_i distinct linear characters of D. If N = C, then this follows from [I, (6.19), p. 86], so now assume that $N \neq C$. By Mackey's Theorem [I, (5.6), p. 74], $\chi_D = \sum_{i=0}^{p-1} \lambda_D^{x^i}$, where $G/A = \langle xA \rangle$. Let $0 \leq i \leq j < p$ and assume that $\lambda_D^{x^i} = \lambda_D^{x^j}$. It suffices to show that i = j. We have $D/N = \langle dN \rangle$ for some $d \in D - N$. Then $\lambda(x^i d) = \lambda^{x^i}(d) = \lambda^{x^j}(d) = \lambda^{(x^i d)}$, which implies that $x^i d = x^j d$ since λ_C is faithful. Therefore, $x^{j-i} d = d$. If $i \neq j$, then 0 < j - i < p, so $G = \langle x^{j-i}, A \rangle$ and it follows that $d \in Z(G) \cap C = N$, a contradiction. Thus, i = j. Our claim follows by putting $\eta_i := \lambda_D^{x^i}$ $(0 \leq i < p)$.

Next, we show that χ vanishes on D - N. By Clifford's Theorem [I, (6.2), p. 79], we have $\chi_N = p\mu$ for some linear character μ of N. With the notation as in the preceding paragraph we have

$$\sum_{i=0}^{p-1} (\mu, \eta_i)_N = (\mu, \chi)_N = p$$

and, since each $(\mu, \eta_i)_N$ is at most one, it follows that $(\mu, \eta_i)_N = 1$ for all *i*. Therefore, $(\mu^D, \eta_i)_D = (\mu, \eta_i)_N = 1$ for all *i*, where we have used Frobenius Reciprocity. Since μ^D has degree *p*, it follows that $\chi_D = \mu^D$ and so χ vanishes on D - N by the definition of the induced character [I, (5.1), p. 62] and the normality of *N*.

Define natural numbers s and t as follows:

$$(s,t) = \begin{cases} (p,p), & \text{if } |H| = 1, \\ (1,p), & \text{if } |H| = p, H \subseteq A, \\ (p,1), & \text{if } |H| = p, H \not\subseteq A. \end{cases}$$

Since |H| is either 1 or p, as observed earlier, this defines s and t in all cases.

As above, we have $G/A = \langle xA \rangle$ and $D/N = \langle dN \rangle$ for some $x \in G$ and $d \in D$. We shall show that the cosets $d^i x^j H$ $(0 \leq i < s, 0 \leq j < t)$ are mutually orthogonal with respect to B_H^{χ} . Let $0 \leq i, k < s$ and $0 \leq j, l < t$ and assume that $(i, j) \neq (k, l)$. First suppose that $j \neq l$. Then $t \neq 1$, so $H \subseteq A$. Therefore, for each $h \in H$, we have $x^{-j}d^{k-i}x^lh = x^{l-j}x^{-l}d^{k-i}x^lh \in x^{l-j}A \subseteq G - A$. Now $\chi = \lambda^G$ and A is a normal subgroup of G, so by the definition of the induced character, χ vanishes on G - A, so

(*)
$$B_{H}^{\chi}(d^{i}x^{j}H, d^{k}x^{l}H) = \frac{\chi(e)}{|H|} \sum_{h \in H} \chi(x^{-j}d^{k-i}x^{l}h) = 0.$$

Now suppose that j = l. Then $i \neq k$. In particular, $s \neq 1$, so that $H \cap A = \{e\}$. It follows that $x^{-j}d^{k-i}x^{j}h \in G - A$ for $h \in H - \{e\}$, while $x^{-j}d^{k-i}x^{j} \in D - N$. We have noted that χ vanishes on G - A and on D - N, so (*) is valid in this case as well.

Now we show that $\chi(e)(\chi, 1)_H = st$. If |H| = 1, then both sides of this equation equal p^2 . Now assume that $|H| \neq 1$, so that |H| = p.

We claim that $\chi(h) = 0$ for all $e \neq h \in H$. If $H \not\subseteq A$, then $H \cap A = \{e\}$ and the claim follows since χ vanishes on G - A. Now assume that $H \subseteq A$. The socle of A is ZH where Z is the subgroup of C of order p (recalling that $C \neq \{e\}$ by the first paragraph of the proof). Now as the socle, ZHis characteristic in A and hence normal in G. As above, we have $G/A = \langle xA \rangle$ for some $x \in G$. The conjugation action of x on ZH fixes the elements of Z and hence induces an action on ZH/Z, which must be the trivial action. Writing $H = \langle h \rangle$, we have ${}^{x}h = zh$ for some $z \in Z$. Moreover, $z \neq e$. (Otherwise, we get $H \triangleleft G$ so that our assumption $(\chi, 1)_{H} \neq 0$ implies that $H \subseteq \ker \chi$ [I, (6.7), p. 81] contrary to the fact that χ is faithful.) By induction, ${}^{x^{i}}h = z^{i}h$ for all $0 \leq i < p$. Therefore, using Mackey's Theorem, we obtain

$$\chi(h) = \sum_{i=0}^{p-1} \lambda^{x^i}(h) = \sum_i \lambda^{x^i}(h) = \lambda(h) \sum_i \lambda(z)^i = 0,$$

the last equality due to the fact that $\lambda(z)$ is a primitive *p*th root of unity (using that λ_C is faithful as observed above). Since *h* was an arbitrary generator of *H*, it follows that $\chi(h) = 0$ for all $e \neq h \in H$, as claimed.

Finally, according to the previous paragraph, we have

$$(\chi, 1)_H = \frac{1}{|H|} \sum_{h \in H} \chi(h) = \frac{1}{|H|} \chi(e) = 1$$

(still assuming that $|H| \neq 1$), so that $\chi(e)(\chi, 1)_H = p = st$, as desired. This completes the proof. \Box

3.2 Corollary. The following groups are o-basis groups $(p, prime, n \ge 1)$:

- (1) any finite abelian group,
- (2) the dihedral group D_{2^n} ,
- (3) the quaternion group Q_{2^n} ,
- (4) the semidihedral group S_{2^n} ,
- (5) the group with presentation $\langle x, a | x^p = 1 = a^{p^{n-1}}, a^x = a^{1+p^{n-2}} \rangle$,
- (6) any group of order p^3 ,
- (7) any extra-special p-group.

Proof. Let G be one of the groups in (1-5). According to [R, 5.3.4, p. 136], G is a p-group with a cyclic maximal subgroup, say C. Therefore, G satisfies the hypotheses of 3.1 with A = C.

Next we prove (6). Let G be a group of order p^3 . Then G has a nontrivial center [R, 1.6.14, p. 39] and hence a normal subgroup C of order p, which is necessarily cyclic. By the First Sylow Theorem, G has a subgroup A of order p^2 containing C. By reason of order, A is abelian and, again by the First Sylow Theorem, A is normal. The hypotheses of 3.1 are satisfied and therefore G is an o-basis group.

Finally, we prove (7). Let G be an extra-special p-group. Then, by definition, G' = Z and |Z| = p, where G' is the commutator subgroup of G and Z is the center of G. We shall use the characterization of o-basis group given in 1.3. Let $H \leq G$ and $\chi \in \operatorname{Irr}(G)$ with χ nonlinear and $(\chi, 1)_H \neq 0$. According to [K, Theorems 2.17 and 2.18, pp. 812-813], $|G| = p^{2r+1}$ for some $r \geq 1$, $\chi(e) = p^r$, χ is faithful, and χ vanishes on G - Z. Since χ is faithful, we have $H \cap Z = \{e\}$ (arguing as in the second paragraph of the proof of 3.1). Since χ vanishes on G - Z, we get

$$(\chi, 1)_H = \frac{1}{|H|} \sum_{h \in H} \chi(h) = \frac{\chi(e)}{|H|} = \frac{p^r}{|H|}.$$

Therefore, $t := \chi(e)(\chi, 1)_H = p^{2r}/|H| = |G: ZH|$. Let a_1ZH, \ldots, a_tZH be the distinct cosets of ZH in G. Then the cosets a_1H, \ldots, a_tH are mutually orthogonal relative to B_H^{χ} . Indeed, for $i \neq j$ and $h \in H$, we have $a_i^{-1}a_jh \in G - Z$ so that $\chi(a_i^{-1}a_jh) = 0$ and therefore $B_H^{\chi}(a_iH, a_jH) = 0$. Thus G is an o-basis group by 1.3. \Box

Remarks. It was noted earlier that (1) follows trivially from 1.3 and that (2) followed from [HT]. Since a nonabelian group of order p^3 is extra-special [R, 5.3.8, p. 141], (6) also follows from (7) and (1).

In view of 3.2, one might suspect that every finite p-group is an o-basis group. Our final example shows that this is not the case, however.

Example. We exhibit a group of order 3⁴ that is not an o-basis group. For each $i \in \{1, 2, 3, 4\}$ let $C_i = \langle c_i \rangle$ be a cyclic group of order 3. There is an action of the group C_4 on the group $N := C_1 \times C_2 \times C_3$ uniquely determined by $c_1^{c_4} = c_2$, $c_2^{c_4} = c_3$, $c_3^{c_4} = c_1$, where we view $C_i \leq N$ $(i \in \{1, 2, 3\})$ in the usual way. Let G be the semidirect product $N \rtimes C_4$ relative to this action (so in fact G is the wreath product $G = \mathbb{Z}_3$ wr \mathbb{Z}_3). Then $|G| = 3^4$. Let λ be the linear character of N satisfying $\lambda(c_1) = \epsilon$, $\lambda(c_2) = 1 = \lambda(c_3)$, with $\epsilon^3 = 1$, $\epsilon \neq 1$, and let χ be the induced character λ^G . Since $\lambda^{c_4^{-1}}(c_1) = \lambda(c_1^{c_4}) = \lambda(c_2) = 1 \neq \epsilon = \lambda(c_1)$, it follows that the inertia group of λ is N. Therefore, χ is irreducible [I, (6.1), p. 95]. By Clifford's theorem [I, (6.2), p. 79], $\chi_N = \lambda + \lambda^{c_4} + \lambda^{c_4^2}$. In particular, we have

$$\chi(c_1^{i_1}c_2^{i_2}c_3^{i_3}) = \epsilon^{i_1} + \epsilon^{i_2} + \epsilon^{i_3}$$

 $(i_i \in \{0, 1, 2\})$. Let $H = C_3 \leq N$. From the formula above, we get

$$\frac{1}{|H|} \sum_{h \in H} \chi(c_1^{i_1} c_2^{i_2} h) = \epsilon^{i_1} + \epsilon^{i_2}$$

for $i_j \in \{0, 1, 2\}$. We see that this quantitiy is never zero, for if it were, we would have $1 = (\epsilon^{i_1})^3 = (-\epsilon^{i_2})^3 = -1$. It follows that for any $a, b \in N$, $B_H^{\chi}(aH, bH) \neq 0$. Let a_1H, \ldots, a_tH be a set of mutually orthogonal cosets relative to B_H^{χ} . Then these cosets must lie in distinct cosets of N in G. Indeed, suppose $a_iH, a_jH \subseteq aN$ for some $a \in G$ with $i \neq j$. Then using G-invariance of B_H^{χ} (1.1), we have $0 = B_H^{\chi}(a_iH, a_jH) = B_H^{\chi}(a^{-1}a_iH, a^{-1}a_jH)$, which is a contradiction as $a^{-1}a_i, a^{-1}a_j \in N$. We conclude that $t \leq |G:N| = 3$.

On the other hand, the formula above gives $\chi(e)(\chi, 1)_H = 6$. Therefore, G is not an o-basis group by 1.3.

References

- [A] D. Alvis, Units in Hecke algebras, J. Algebra 216 no. 2 (1999), 417–430.
- [F] R. Freese, Inequalities for generalized matrix functions based on arbitrary characters, Linear Algebra Appl. 7 (1973), 337–345.
- [H] R. R. Holmes, Orthogonal bases of symmetrized tensor spaces, Linear and Multilinear Algebra 39 (1995), 241–243.
- [HT] R. R. Holmes and T.-Y. Tam, Symmetry classes of tensors associated with certain groups, Linear and Multilinear Algebra 32 (1992), 21–31.
- [Hu] T. W. Hungerford, Algebra, Springer-Verlag, New York, 1974.
- [I] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
- [K] G. Karpilovsky, Group Representations, Volume 1, Part B: Introduction to Group Representations and Characters, North-Holland, Amsterdam, 1992.
- [M] R. Merris, Recent advances in symmetry classes of tensors, Linear and Multilinear Algebra 7 (1979), 317–328.
- [R] D. J. S. Robinson, A Course in the Theory of Groups, Springer-Verlag, New York, 1982.
- [WG] B. Y. Wang and M. P. Gong, A higher symmetry class of tensors with an orthogonal basis of decomposable symmetrized tensors, Linear and Multilinear Algebra 30(1-2) (1991), 61–64.

Department of Mathematics, Auburn University, AL 36849-5310