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Abstract. Studied is an assumption on a group that ensures that no matter how the group is embedded
in a symmetric group, the corresponding symmetrized tensor space has an orthogonal basis of standard
(decomposable) symmetrized tensors.

0. Introduction

Let V be a complex inner product space and let G be a subgroup of the symmetric group Sn for
some n. Corresponding to an irreducible character of G is a symmetrizer, a certain endomorphism
of the n-fold tensor space V ⊗n. The image under a symmetrizer of a standard basis vector of V ⊗n

is called a standard (or decomposable) symmetrized tensor.
We seek conditions under which V ⊗n will have an orthogonal basis consisting entirely of standard

symmetrized tensors (such a basis being called an o-basis for brevity). The problem of finding such
conditions was first considered by Wang and Gong in [WG] where it was shown that if G is the
dihedral group of order eight (viewed naturally as a subgroup of S4), then V ⊗4 has an o-basis. In
subsequent work [HT], Tam and the author showed that more generally if G is a dihedral group of
order a power of two, then the corresponding tensor space has on o-basis. Moreover, it was noted
there that this fact is independent of the particular embedding of the dihedral group inside the
symmetric group. So, for instance, an o-basis exists for V ⊗n where n is the order of the dihedral
group (still assumed to be a power of two) and the embedding is the one given by Cayley’s Theorem.

Motivated by this example, we give in this paper conditions on a finite group ensuring that,
regardless of how it is embedded in a symmetric group, the corresponding tensor space will have
an o-basis. We call a group satisfying this condition an o-basis group.

In Section 1, we state the definition of an o-basis group and establish some properties. In Section
2, we review more carefully the notion of an o-basis of a tensor space and then give connections
between this notion and that of an o-basis group. Finally, we show in Section 3 that the class of
o-basis groups contains some interesting groups–the extra special p-groups (p, prime), for example.

1. Main definition and some properties

Let G be a finite group and let H be a subgroup of G. Denote by G/H the set of (left) cosets of
H in G. The natural left action of G on the set G/H extends linearly to the complex vector space
having this set as basis, which we denote by C(G/H).

Let Irr(G) denote the set of irreducible characters of G. Let χ ∈ Irr(G). Define a form Bχ
H on

C(G/H) by putting

Bχ
H(aH, bH) =

χ(e)
|H|

∑

h∈H

χ(a−1bh)
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2 RANDALL R. HOLMES

(where e is the identity element of G) and extending linearly in the first component and antilinearly
in the second.

1.1 Proposition. Bχ
H is a well-defined G-invariant Hermitian form.

Proof. First note that since χ is conjugation invariant [I, (2.3), p. 14], we have χ(ga) = χ(g−1gag) =
χ(ag) for all a, g ∈ G.

Suppose a1H = aH and b1H = bH so that a1 = ax and b1 = by for some x, y ∈ H. Then for
each h ∈ H,

χ(a−1
1 b1h) = χ(x−1a−1byh) = χ(a−1byhx−1).

As h ranges through H, yhx−1 also ranges through H, so Bχ
H(a1H, b1H) = Bχ

H(aH, bH) and Bχ
H

is well-defined.
To say that Bχ

H is G-invariant is to say that Bχ
H(caH, cbH) = Bχ

H(aH, bH) for all a, b, c ∈ G and
this is clear.

Finally,

Bχ
H(bH, aH) =

χ(e)
|H|

∑

h∈H

χ(b−1ah) =
χ(e)
|H|

∑

h∈H

χ(h−1a−1b)

=
χ(e)
|H|

∑

h∈H

χ(a−1bh−1) = Bχ
H(aH, bH)

(a, b ∈ G), where we have used that χ(g) = χ(g−1) for g ∈ G [I, (2.15), p. 20]. Therefore, Bχ
H is

Hermitian. ¤

Put Cχ
H := C(G/H)/ kerBχ

H , where kerBχ
H := {x ∈ C(G/H) : Bχ

H(x, y) = 0 for all y ∈
C(G/H)}. Then Bχ

H induces a well-defined form B̄χ
H on Cχ

H given by B̄χ
H(x, y) = Bχ

H(x, y) (x, y ∈
C(G/H)), where here and below we use x to denote the coset x+kerBχ

H (context should keep any
confusion from arising over this notation and the usual notation for complex conjugate which we
also use). By 1.1, kerBχ

H is closed under the action of G and so we have a well-defined action of G
on Cχ

H . Clearly, B̄χ
H is G-invariant.

For characters ψ and ϕ of G, one defines (ψ,ϕ)H = 1
|H|

∑
h∈H ψ(h)ϕ(h) [I, (2.16), p. 20]. We

denote the principal character of G by 1 (so 1(g) = 1 for all g ∈ G).

1.2 Theorem.

(1) dimC Cχ
H = χ(e)(χ, 1)H .

(2) The form B̄χ
H is positive definite.

Proof. Let a1H, . . . , anH be the distinct left cosets of H in G. Then {aiH : 1 ≤ i ≤ n} is a basis
for C(G/H). Let A be the n× n-matrix with (i, j)-entry Bχ

H(aiH, ajH)/|G : H|, where |G : H| is
the index of H in G. (So A is |G : H|−1 times the matrix of the form Bχ

H relative to the above
basis.) We claim that A2 = A. The (i, j)-entry of A2 is

|G : H|−2
n∑

k=1

Bχ
H(aiH, akH)Bχ

h (akH, ajH) =
χ(e)2

|G|2
n∑

k=1

(∑

h∈H

χ(a−1
i akh)

)(∑

l∈H

χ(a−1
k aj l)

)

=
χ(e)2

|G|2
∑

l∈H

∑

h∈H
1≤k≤n

χ(akha−1
i )χ(aj lh

−1a−1
k ).
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Replacing aih
−1a−1

k with g we have χ(aj lh
−1a−1

k ) = χ(aj la
−1
i g) = χ(gaj la

−1
i ), so the expression

above becomes
χ(e)2

|G|2
∑

l∈H

∑

g∈G

χ(g−1)χ(gaj la
−1
i ) =

χ(e)
|G|

∑

l∈H

χ(aj la
−1
i )

using the Generalized Orthogonality Relation [I, p. 19, (2.13)]. Since χ(aj la
−1
i ) = χ(a−1

i aj l), this
last expression is Bχ

H(aiH, ajH)/|G : H|, which is the (i, j)-entry of A. Thus, A2 = A as claimed.
Now A is Hermitian by 1.1, so it is similar to a diagonal matrix with the eigenvalues of A along

the main diagonal. But since A2 = A, an eigenvalue of A is either 1 or 0. Hence, the rank of A is
equal to the trace of A. But

trA =
1

|G : H|
n∑

i=1

Bχ
H(aiH, aiH) =

χ(e)
|G|

n∑

i=1

∑

h∈H

χ(h) =
χ(e)
|H|

∑

h∈H

χ(h) = χ(e)(χ, 1)H .

Since dimC Cχ
H = rank A, (1) follows.

Finally, by the preceding paragraph, the form Bχ
H on C(G/H) is positive semidefinite, so that

the induced form B̄χ
H on Cχ

H is positive definite. This proves (2). ¤
We shall call G an o-basis group if for every H ≤ G and χ ∈ Irr(G) the vector space Cχ

H has
a basis that is orthogonal relative to B̄χ

H consisting entirely of elements of the form aH (a ∈ G).
Such a basis shall be called an o-basis of Cχ

H .

1.3 Corollary. The following are equivalent:
(1) G is an o-basis group.
(2) For each H ≤ G and each χ ∈ Irr(G), there exist at least χ(e)(χ, 1)H cosets of H in G that

are mutually orthogonal relative to Bχ
H .

(3) For each H ≤ G and each nonlinear χ ∈ Irr(G) with (χ, 1)H 6= 0, there exist at least
χ(e)(χ, 1)H cosets of H in G that are mutually orthogonal relative to Bχ

H .

Proof. We first observe that for every a, b ∈ G,
B̄χ

H(aH, bH) = Bχ
H(aH, bH)

so that aH and bH are orthogonal relative to B̄χ
H if and only if aH and bH are orthogonal relative

to Bχ
H .

Assume that G is an o-basis group and let H ≤ G and χ ∈ Irr(G). There exists an o-basis
{a1H, . . . , atH} (possibly empty with t = 0) of Cχ

H . By 1.2, t = χ(e)(χ, 1)H and, by the above
argument, a1H, . . . , atH are mutually orthogonal relative to Bχ

H . This shows that (1) implies (2).
That (2) implies (3) is obvious.
Finally, assume (3) holds. Let H ≤ G and χ ∈ Irr(G). If (χ, 1)H = 0, then dim Cχ

H = 0, so the
empty set is an o-basis of Cχ

H . Assume that (χ, 1)H 6= 0. Note that, in particular,

B̄χ
H(aH, aH) =

χ(e)
|H|

∑

h∈H

χ(h) = χ(e)(χ, 1)H 6= 0

so that aH 6= 0 for all a ∈ G. If χ is linear, then dim Cχ
H = 1, so {H} is an o-basis of Cχ

H . Assume
that χ is nonlinear. By assumption, there exist t = χ(e)(χ, 1)H cosets a1H, . . . , atH that are
mutually orthogonal relative to Bχ

H . Then {a1H, . . . , atH} is orthogonal relative to B̄χ
H and, since

aiH 6= 0 for each i, this set is linearly independent and hence an o-basis of Cχ
H (using 1.2). ¤

Remarks. (1) Since the irreducible characters of an abelian group are all linear, it follows vacuously
from condition (3) of 1.3 that every abelian group is an o-basis group.

(2) In view of 1.3, the proof of Theorem 3.1 in [HT] shows that if G is a dihedral group of order
2k (k ≥ 0), then G is an o-basis group. (See also [HT, Remark 2, p. 27].) We shall recover this
result as a special case of 3.1 below.
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1.4 Proposition. Let G be an o-basis group. For each H ≤ G and χ ∈ Irr(G) there exist at least
χ(e)(χ, 1)H − 1 cosets aH for which

∑
h∈H χ(ah) = 0. In particular, each χ ∈ Irr(G) has at least

χ(e)2 − 1 zeros.

Proof. Let H ≤ G and χ ∈ Irr(G). If (χ, 1)H = 0, then the claim is vacuously satisfied, so assume
(χ, 1)H 6= 0. By assumption and 1.3 there exist t = χ(e)(χ, 1)H cosets a1H, . . . , atH that are
mutually orthogonal relative to Bχ

H . By the G-invariance of Bχ
H (1.1), we may assume that a1 = e.

For each 1 < i ≤ t we have

0 = Bχ
H(a1H, aiH) =

χ(e)
|H|

∑

h∈H

χ(aih)

and this proves the first statement. The second statement follows by letting H = {e}. ¤

In the remainder of this section, we study the o-basis group property as it relates to homomorphic
images.

Let N /G, let χ ∈ Irr(G) and assume that N ⊆ kerχ. Put Ĝ := G/N and denote by â the image
of a ∈ G under the canonical epimorphism G → Ĝ. The function χ̂ : Ĝ → C given by χ̂(â) = χ(a)
is a well-defined irreducible character of Ĝ [I, (2.22), p. 24]. Let H be a subgroup of G.

1.5 Proposition. Let the notation be as above. The linear map ϕ : Cχ
H → Cχ̂

Ĥ
given by ϕ(aH) = âĤ

is a well-defined linear isometry. In particular, Cχ
H has an o-basis if and only if Cχ̂

Ĥ
has an o-basis.

Proof. Put I = H ∩N and let h1I, . . . , hnI be the distinct elements of H/I. By an isomorphism
theorem, Ĥ ∼= H/I and ĥ1, . . . , ĥn are the distinct elements of Ĥ.

Let a, b ∈ G. Using that χ is constant on each coset of I, we get

Bχ
H(aH, bH) =

χ(e)
|H|

∑

h∈H

χ(a−1bh) =
χ(e)
|H : I|

n∑

i=1

χ(a−1bhi)

=
χ̂(ê)
|Ĥ|

n∑

i=1

χ̂(â−1b̂ĥi) = Bχ̂

Ĥ
(âĤ, b̂Ĥ).

In particular, the linear map C(G/H) → C(Ĝ/Ĥ) given by aH 7→ âĤ sends the kernel of Bχ
H into

the kernel of Bχ̂

Ĥ
so that ϕ is well-defined. Clearly ϕ is surjective. Finally, if x ∈ kerϕ, then

B̄χ
H(x, x) = B̄χ̂

Ĥ
(ϕ(x), ϕ(x)) = 0,

so that x = 0 since B̄χ
H is definite (1.2). It follows that ϕ is injective. ¤

1.6 Corollary. The class of o-basis groups is closed under taking homomorphic images.

Proof. Let G be an o-basis group and let N be a normal subgroup of G. By the First Isomorphism
Theorem it suffices to show that Ĝ := G/N is an o-basis group.

Let Ĥ ≤ Ĝ and let χ̂ ∈ Irr(Ĝ). With χ : G → C defined by χ(a) = χ̂(aN), we have χ ∈ Irr(G)
and N ⊆ kerχ. Also, Ĥ = H/N for some H ≤ G (with H ⊇ N). By assumption, Cχ

H has an
o-basis, so Cχ̂

Ĥ
has an o-basis as well by 1.5. ¤
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2. Orthogonal bases of symmetrized tensor spaces

In this section, we study connections between the notion of an o-basis group and the existence
of special bases (called o-bases) of symmetrized tensor spaces.

Fix positive integers m and n and put Γn,m = {γ ∈ Zn : 1 ≤ γi ≤ m}. Let G be a subgroup
of the symmetric group Sn. There is a right action of G on Γn,m given by γσ = (γσ(1), . . . , γσ(n))
(γ ∈ Γn,m, σ ∈ G).

Let V be a complex inner product space of dimension m and let {e1, . . . , em} be an orthonormal
basis of V . To avoid trivialities, we assume that m ≥ 2. Denote by V ⊗n the n-fold tensor power of
V . For γ ∈ Γn,m, put eγ := eγ1 ⊗ · · · ⊗ eγn

∈ V ⊗n. Then {eγ : γ ∈ Γn,m} is a basis for V ⊗n.
Let χ ∈ Irr(G). The symmetrizer relative to χ is the element of the group algebra CG of G given

by sχ := χ(e)
|G|

∑
σ∈G χ(σ)σ. For γ ∈ Γn,m, put eχ

γ := sχeγ , where we view V ⊗n as a left CG-module
via σeγ = eγσ−1 (σ ∈ G). We shall refer to eχ

γ as a standard symmetrized tensor (some authors use
the term decomposable tensor).

The inner product on V induces an inner product on V ⊗n. If W is a subspace of V ⊗n then an
orthogonal basis of W consisting entirely of standard symmetrized tensors shall be called an o-basis
of W (relative to G).

Choose a set 4 of representatives of the orbits of Γn,m under the right action of G given above.
Then V ⊗n =

⊕
V χ

γ (orthogonal direct sum), where V χ
γ := 〈eχ

γσ : σ ∈ G〉 and the sum is over all
χ ∈ Irr(G), γ ∈ 4 (cf. [F], [M]).

2.1 Theorem. If G is an o-basis group and ϕ : G → Sn (n ∈ N) is a homomorphism, then V ⊗n

has an o-basis relative to ϕ(G).

Proof. Let G be an o-basis group and let ϕ : G → Sn (n ∈ N) be a homomorphism. Put J = ϕ(G)
and fix ψ ∈ Irr(J) and γ ∈ Γn,m. It is enough to show that V ψ

γ has an o-basis (relative to J).
Set H = ϕ−1(Jγ), where Jγ is the stabilizer of γ under the right action of J on Γn,m. Also, put
χ = ψ ◦ ϕ ∈ Irr(G). By the definition of o-basis group, Cχ

H has an o-basis {a1H, . . . , atH} and by
1.2, t = χ(e)(χ, 1)H . Put θi = ϕ(ai)−1. We claim that {eψ

γθi
: 1 ≤ i ≤ t} is an o-basis of V ψ

γ . For
1 ≤ i, j ≤ t, we have

B̄χ
H(aiH, ajH) =

χ(e)
|H|

∑

h∈H

χ(a−1
i ajh) =

ψ(e)
|Jγ |

∑

σ∈Jγ

ψ(θiθ
−1
j σ) = (eψ

γθiθ
−1
j

, eψ
γ ) = (eψ

γθi
, eψ

γθj
),

where the next to the last equality is from [F, p. 339]. The equation above with j = i shows that
each eψ

γθi
is nonzero (using definiteness of B̄χ

H (1.2)). On the other hand, the equation above with
j 6= i shows that the vectors eψ

γθi
are mutually orthogonal. In particular, the set {eψ

γθi
: 1 ≤ i ≤ t}

is linearly independent. Also, by [F, p. 339],

dimC V ψ
γ =

ψ(e)
|Jγ |

∑

σ∈Jγ

ψ(σ) =
χ(e)
|H|

∑

h∈H

χ(h) = χ(e)(χ, 1)H = t,

so the theorem follows. ¤
2.2 Corollary. The following groups are not o-basis groups:

(1) any dihedral group Dn (of order 2n) with n not a power of 2,
(2) any 2-transitive subgroup of Sn with n ≥ 3 (e.g., the alternating group An, n ≥ 4 and the

symmetric group Sn, n ≥ 3),
(3) any finite simple group of Lie type.
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Proof. Let G be one of the groups in the list above. In view of 2.1, it is enough to find a homo-
morphism ϕ : G → Sn for some n such that V ⊗n does not have an o-basis relative to ϕ(G).

Case (1) is given in [HT, Corollary 3.3, p. 27] with ϕ : Dn → Sn the natural embedding, case
(2) is given in [H, Theorem, p. 242] with ϕ : G → Sn the inclusion map, and case (3) is given in
[A, Theorem 5.1, p. 428] with ϕ : G → Sn the embedding induced by the natural action of G on
G/B, where B is a Borel subgroup and n = |G : B|. ¤

The converse of 2.1 does not hold in general since it is possible to have a group homomorphism
ϕ : G → Sn such that V ⊗n has an o-basis relative to ϕ(G) with G not an o-basis group. (Indeed,
one can let G be any of the groups in 2.2 and let ϕ : G → Sn (any n) be the trivial homomorphism.
Then the identity map on V ⊗n is the sole symmetrizer and {eγ : γ ∈ Γn,m} is an o-basis of V ⊗n

relative to ϕ(G) = {e}.) However, the next theorem provides a characterization of o-basis group
expressed in terms of symmetrized tensors. In its statement, the Cayley embedding ϕ : G → Sn is
the homomorphism that takes g ∈ G to the permutation ϕ(g) on G given by ϕ(g)(h) = gh (h ∈ G),
this permutation being viewed as an element of Sn, where n = |G|.
2.3 Theorem. Let G be a finite group, let n = |G|, and let ϕ : G → Sn be the Cayley embedding.
Then G is an o-basis group if and only if V ⊗n has an o-basis relative to ϕ(G).

Proof. One implication follows from 2.1. Now assume that V ⊗n has an o-basis relative to ϕ(G).
Fix H ≤ G and χ ∈ Irr(G). We view Γn,m as the set of functions from G to {1, . . . , m} using the
same one-to-one correspondence G → {1, . . . , n} by which we identify the symmetric group on G
with Sn. Define γ ∈ Γn,m by

γg =
{

1, if g ∈ H,

2, if g /∈ H.

Then clearly the stabilizer of γ in G is H. Put ψ = χ ◦ ϕ−1|ϕ(G) ∈ Irr(ϕ(G)). By assumption (and
the orthogonal direct sum decomposition given before 2.1), V ψ

γ has an o-basis, that is, there exist
g1, . . . , gt ∈ G with t = dimC V ψ

γ such that {eψ
γϕ(gi)

: 1 ≤ i ≤ t} is an orthogonal basis of V χ
γ . The

computations in the proof of 2.1 show that for 1 ≤ i, j ≤ t, B̄χ
H(g−1

i H, g−1
j H) = (eψ

γϕ(gi)
, eψ

γϕ(gj)
)

and that dimC V ψ
γ = χ(e)(χ, 1)H , so, arguing as in that same proof and in view of 1.2 {g−1

i H :
1 ≤ i ≤ t} is an o-basis of Cχ

H . ¤

3. A sufficient condition and examples

In the first theorem of this section we consider a certain class of p-groups and show that its
members are o-basis groups. This theorem is used in 3.2 to provide a list of familiar groups that
are o-basis groups.

3.1 Theorem. Let G be a finite p-group (p, prime) and assume that G has an abelian normal
subgroup A and a cyclic normal subgroup C with C ⊆ A satisfying |G : A| ≤ p and |A : C| ≤ p.
Then G is an o-basis group.

Proof. We verify the characterization of o-basis group given in 1.3. Let H ≤ G and χ ∈ Irr(G) with
χ nonlinear and (χ, 1)H 6= 0. Note that since χ is nonlinear, G is nonabelian so that |G| > p2 and
C 6= {e}. A quotient of G clearly satisfies the hypotheses of the theorem so we assume, without
loss of generality in view of 1.5, that χ is faithful.

We claim that H ∩C = {e}. Let J = H ∩C. Now J is a characteristic subgroup of C (as is any
subgroup of C since C is cyclic) and C is a normal subgroup of G. Hence, J is a normal subgroup
of G. Since (χ, 1)H 6= 0, it follows that (χ, 1)J 6= 0. Then [I, (6.7), p. 81] says that J ⊆ kerχ = {e}.
Thus H ∩ C = {e}, as claimed.
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We now claim that |H| is either 1 or p. Since H ∩ C = {e}, we have |H||C| = |HC| ≤ |G|.
Now |C| = |G|/|G : C| ≥ |G|/p2, so |H| ≤ p2. Moreover, |H| divides |G| which is a power of p, so
|H| ∈ {1, p, p2}. Suppose that |H| = p2. Then |G : A| = p = |A : C|. In particular, |H ∩ A| = p so
that H ∩A = 〈h〉 for some h ∈ H. Moreover, H 6⊆ A so there exists some x ∈ H −A. Then clearly
G = 〈C, h, x〉. Now H is abelian since it has order p2, so it follows that h is in the center Z(G) of
G. Now G acts by conjugation on C and hence fixes a nonidentity element c of C [Hu, Lemma 5.1,
p. 93]. Thus Z(G) contains 〈c〉 × 〈h〉. But this contradicts that Z(G) is cyclic since χ is faithful [I,
(2.32), p. 29]. We conclude that |H| is either 1 or p, as claimed.

By Ito’s Theorem [I, (6.15), p. 84], χ(e) divides |G : A| which is either 1 or p. We are assuming
that χ is nonlinear, so we have χ(e) = p and |G : A| = p. Let λ be an irreducible constituent of χA.
Since A is abelian, we have λ(e) = 1. Frobenius Reciprocity gives (χ, λG)G = (χ, λ)A ≥ 1. Since χ
and λG both have degree p, we conclude that χ = λG.

For later use, we observe that λC is faithful. Indeed, kerλC is a characteristic subgroup of C
and hence a normal subgroup of G so that

kerλC =
⋂

x∈G

(kerλC)x ⊆
⋂

x∈G

(ker λ)x = kerλG = ker χ = {e}

using [I, (5.11), p. 67] and the fact that χ is faithful.
Let N = C ∩ Z(G). Assume for the moment that N 6= C. The conjugation action of G on C

induces a well-defined action of G on C/N given by (cN)x = cxN for c ∈ C, x ∈ G. According
to [Hu, Theorem 5.2, p. 93], this action fixes the elements of a subgroup of order p, which can be
expressed in the form D/N with D a subgroup of C containing N .

So far, D is defined if N 6= C. If N = C, put D = A and note that C 6= A, for otherwise, N = A
and the inertia subgroup of λ is G, contradicting that λG = χ is irreducible by [I, (6.1), p. 95]. We
have that D is a normal subgroup of G and |D : N | = p.

We claim that χD =
∑p−1

i=0 ηi, with the ηi distinct linear characters of D. If N = C, then this
follows from [I, (6.19), p. 86], so now assume that N 6= C. By Mackey’s Theorem [I, (5.6), p. 74],
χD =

∑p−1
i=0 λxi

D , where G/A = 〈xA〉. Let 0 ≤ i ≤ j < p and assume that λxi

D = λxj

D . It suffices to
show that i = j. We have D/N = 〈dN〉 for some d ∈ D − N . Then λ(xi

d) = λxi

(d) = λxj

(d) =
λ(xj

d), which implies that xi

d = xj

d since λC is faithful. Therefore, xj−i

d = d. If i 6= j, then
0 < j− i < p, so G = 〈xj−i, A〉 and it follows that d ∈ Z(G)∩C = N , a contradiction. Thus, i = j.
Our claim follows by putting ηi := λxi

D (0 ≤ i < p).
Next, we show that χ vanishes on D − N . By Clifford’s Theorem [I, (6.2), p. 79], we have

χN = pµ for some linear character µ of N . With the notation as in the preceding paragraph we
have

p−1∑

i=0

(µ, ηi)N = (µ, χ)N = p

and, since each (µ, ηi)N is at most one, it follows that (µ, ηi)N = 1 for all i. Therefore, (µD, ηi)D =
(µ, ηi)N = 1 for all i, where we have used Frobenius Reciprocity. Since µD has degree p, it follows
that χD = µD and so χ vanishes on D −N by the definition of the induced character [I, (5.1), p.
62] and the normality of N .

Define natural numbers s and t as follows:

(s, t) =





(p, p), if |H| = 1,

(1, p), if |H| = p,H ⊆ A,

(p, 1), if |H| = p,H 6⊆ A.
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Since |H| is either 1 or p, as observed earlier, this defines s and t in all cases.
As above, we have G/A = 〈xA〉 and D/N = 〈dN〉 for some x ∈ G and d ∈ D. We shall show

that the cosets dixjH (0 ≤ i < s, 0 ≤ j < t) are mutually orthogonal with respect to Bχ
H . Let

0 ≤ i, k < s and 0 ≤ j, l < t and assume that (i, j) 6= (k, l). First suppose that j 6= l. Then t 6= 1,
so H ⊆ A. Therefore, for each h ∈ H, we have x−jdk−ixlh = xl−jx−ldk−ixlh ∈ xl−jA ⊆ G − A.
Now χ = λG and A is a normal subgroup of G, so by the definition of the induced character, χ
vanishes on G−A, so

(*) Bχ
H(dixjH, dkxlH) =

χ(e)
|H|

∑

h∈H

χ(x−jdk−ixlh) = 0.

Now suppose that j = l. Then i 6= k. In particular, s 6= 1, so that H ∩ A = {e}. It follows that
x−jdk−ixjh ∈ G− A for h ∈ H − {e}, while x−jdk−ixj ∈ D −N . We have noted that χ vanishes
on G−A and on D −N , so (*) is valid in this case as well.

Now we show that χ(e)(χ, 1)H = st. If |H| = 1, then both sides of this equation equal p2. Now
assume that |H| 6= 1, so that |H| = p.

We claim that χ(h) = 0 for all e 6= h ∈ H. If H 6⊆ A, then H ∩ A = {e} and the claim follows
since χ vanishes on G−A. Now assume that H ⊆ A. The socle of A is ZH where Z is the subgroup
of C of order p (recalling that C 6= {e} by the first paragraph of the proof). Now as the socle, ZH
is characteristic in A and hence normal in G. As above, we have G/A = 〈xA〉 for some x ∈ G.
The conjugation action of x on ZH fixes the elements of Z and hence induces an action on ZH/Z,
which must be the trivial action. Writing H = 〈h〉, we have xh = zh for some z ∈ Z. Moreover,
z 6= e. (Otherwise, we get H / G so that our assumption (χ, 1)H 6= 0 implies that H ⊆ kerχ [I,
(6.7), p. 81] contrary to the fact that χ is faithful.) By induction, xi

h = zih for all 0 ≤ i < p.
Therefore, using Mackey’s Theorem, we obtain

χ(h) =
p−1∑

i=0

λxi

(h) =
∑

i

λ(xi

h) = λ(h)
∑

i

λ(z)i = 0,

the last equality due to the fact that λ(z) is a primitive pth root of unity (using that λC is faithful
as observed above). Since h was an arbitrary generator of H, it follows that χ(h) = 0 for all
e 6= h ∈ H, as claimed.

Finally, according to the previous paragraph, we have

(χ, 1)H =
1
|H|

∑

h∈H

χ(h) =
1
|H|χ(e) = 1

(still assuming that |H| 6= 1), so that χ(e)(χ, 1)H = p = st, as desired. This completes the
proof. ¤
3.2 Corollary. The following groups are o-basis groups (p, prime, n ≥ 1):

(1) any finite abelian group,
(2) the dihedral group D2n ,
(3) the quaternion group Q2n ,
(4) the semidihedral group S2n ,
(5) the group with presentation 〈x, a |xp = 1 = apn−1

, ax = a1+pn−2〉,
(6) any group of order p3,
(7) any extra-special p-group.
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Proof. Let G be one of the groups in (1-5). According to [R, 5.3.4, p. 136], G is a p-group with a
cyclic maximal subgroup, say C. Therefore, G satisfies the hypotheses of 3.1 with A = C.

Next we prove (6). Let G be a group of order p3. Then G has a nontrivial center [R, 1.6.14,
p. 39] and hence a normal subgroup C of order p, which is necessarily cyclic. By the First Sylow
Theorem, G has a subgroup A of order p2 containing C. By reason of order, A is abelian and,
again by the First Sylow Theorem, A is normal. The hypotheses of 3.1 are satisfied and therefore
G is an o-basis group.

Finally, we prove (7). Let G be an extra-special p-group. Then, by definition, G′ = Z and
|Z| = p, where G′ is the commutator subgroup of G and Z is the center of G. We shall use the
characterization of o-basis group given in 1.3. Let H ≤ G and χ ∈ Irr(G) with χ nonlinear and
(χ, 1)H 6= 0. According to [K, Theorems 2.17 and 2.18, pp. 812-813], |G| = p2r+1 for some r ≥ 1,
χ(e) = pr, χ is faithful, and χ vanishes on G−Z. Since χ is faithful, we have H ∩Z = {e} (arguing
as in the second paragraph of the proof of 3.1). Since χ vanishes on G− Z, we get

(χ, 1)H =
1
|H|

∑

h∈H

χ(h) =
χ(e)
|H| =

pr

|H| .

Therefore, t := χ(e)(χ, 1)H = p2r/|H| = |G : ZH|. Let a1ZH, . . . , atZH be the distinct cosets of
ZH in G. Then the cosets a1H, . . . , atH are mutually orthogonal relative to Bχ

H . Indeed, for i 6= j

and h ∈ H, we have a−1
i ajh ∈ G − Z so that χ(a−1

i ajh) = 0 and therefore Bχ
H(aiH, ajH) = 0.

Thus G is an o-basis group by 1.3. ¤
Remarks. It was noted earlier that (1) follows trivially from 1.3 and that (2) followed from [HT].
Since a nonabelian group of order p3 is extra-special [R, 5.3.8, p. 141], (6) also follows from (7) and
(1).

In view of 3.2, one might suspect that every finite p-group is an o-basis group. Our final example
shows that this is not the case, however.

Example. We exhibit a group of order 34 that is not an o-basis group. For each i ∈ {1, 2, 3, 4}
let Ci = 〈ci〉 be a cyclic group of order 3. There is an action of the group C4 on the group
N := C1 × C2 × C3 uniquely determined by cc4

1 = c2, cc4
2 = c3, cc4

3 = c1, where we view Ci ≤ N
(i ∈ {1, 2, 3}) in the usual way. Let G be the semidirect product N oC4 relative to this action (so
in fact G is the wreath product G = Z3 wr Z3). Then |G| = 34. Let λ be the linear character of
N satisfying λ(c1) = ε, λ(c2) = 1 = λ(c3), with ε3 = 1, ε 6= 1, and let χ be the induced character
λG. Since λc−1

4 (c1) = λ(cc4
1 ) = λ(c2) = 1 6= ε = λ(c1), it follows that the inertia group of λ is N .

Therefore, χ is irreducible [I, (6.1), p. 95]. By Clifford’s theorem [I, (6.2), p. 79], χN = λ+λc4 +λc2
4 .

In particular, we have
χ(ci1

1 ci2
2 ci3

3 ) = εi1 + εi2 + εi3

(ij ∈ {0, 1, 2}). Let H = C3 ≤ N . From the formula above, we get
1
|H|

∑

h∈H

χ(ci1
1 ci2

2 h) = εi1 + εi2

for ij ∈ {0, 1, 2}. We see that this quantitiy is never zero, for if it were, we would have 1 = (εi1)3 =
(−εi2)3 = −1. It follows that for any a, b ∈ N , Bχ

H(aH, bH) 6= 0. Let a1H, . . . , atH be a set of
mutually orthogonal cosets relative to Bχ

H . Then these cosets must lie in distinct cosets of N in G.
Indeed, suppose aiH, ajH ⊆ aN for some a ∈ G with i 6= j. Then using G-invariance of Bχ

H (1.1),
we have 0 = Bχ

H(aiH, ajH) = Bχ
H(a−1aiH, a−1ajH), which is a contradiction as a−1ai, a

−1aj ∈ N .
We conclude that t ≤ |G : N | = 3.

On the other hand, the formula above gives χ(e)(χ, 1)H = 6. Therefore, G is not an o-basis
group by 1.3.
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