ORTHOGONALITY OF COSETS RELATIVE TO
IRREDUCIBLE CHARACTERS OF FINITE GROUPS

RaNDALL R. HOLMES

ABSTRACT. Studied is an assumption on a group that ensures that no matter how the group is embedded
in a symmetric group, the corresponding symmetrized tensor space has an orthogonal basis of standard
(decomposable) symmetrized tensors.

0. INTRODUCTION

Let V be a complex inner product space and let G be a subgroup of the symmetric group S,, for
some n. Corresponding to an irreducible character of G is a symmetrizer, a certain endomorphism
of the n-fold tensor space V®". The image under a symmetrizer of a standard basis vector of V®"
is called a standard (or decomposable) symmetrized tensor.

We seek conditions under which V®™ will have an orthogonal basis consisting entirely of standard
symmetrized tensors (such a basis being called an o-basis for brevity). The problem of finding such
conditions was first considered by Wang and Gong in [WG]| where it was shown that if G is the
dihedral group of order eight (viewed naturally as a subgroup of Sy), then V4 has an o-basis. In
subsequent work [HT], Tam and the author showed that more generally if G is a dihedral group of
order a power of two, then the corresponding tensor space has on o-basis. Moreover, it was noted
there that this fact is independent of the particular embedding of the dihedral group inside the
symmetric group. So, for instance, an o-basis exists for V®" where n is the order of the dihedral
group (still assumed to be a power of two) and the embedding is the one given by Cayley’s Theorem.

Motivated by this example, we give in this paper conditions on a finite group ensuring that,
regardless of how it is embedded in a symmetric group, the corresponding tensor space will have
an o-basis. We call a group satisfying this condition an o-basis group.

In Section 1, we state the definition of an o-basis group and establish some properties. In Section
2, we review more carefully the notion of an o-basis of a tensor space and then give connections
between this notion and that of an o-basis group. Finally, we show in Section 3 that the class of
o-basis groups contains some interesting groups—the extra special p-groups (p, prime), for example.

1. MAIN DEFINITION AND SOME PROPERTIES

Let G be a finite group and let H be a subgroup of G. Denote by G/H the set of (left) cosets of
H in G. The natural left action of G on the set G/H extends linearly to the complex vector space
having this set as basis, which we denote by C(G/H).

Let Irr(G) denote the set of irreducible characters of G. Let x € Irr(G). Define a form B, on
C(G/H) by putting

BY(aH,bH) = >|<1(;|) > x(a”"bh)
heH
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2 RANDALL R. HOLMES

(where e is the identity element of G) and extending linearly in the first component and antilinearly
in the second.

1.1 Proposition. B}, is a well-defined G-invariant Hermitian form.

Proof. First note that since x is conjugation invariant [I, (2.3), p. 14], we have x(ga) = x(9~'gag) =
x(ag) for all a,g € G.

Suppose a1 H = aH and by H = bH so that a1 = ax and by = by for some x,y € H. Then for
each h € H,

x(a7'b1h) = x(z 7 a" byh) = x(a” "byha ™).

As h ranges through H, yhax ™! also ranges through H, so B}, (a1H,biH) = BY(aH,bH) and BY
is well-defined.

To say that B}, is G-invariant is to say that B} (caH,cbH) = BY(aH,bH) for all a,b,c € G and
this is clear.

Finally,

BY,(bH,aH) = x(e) 3" x(b7ah) 777 3 x(hla1b)

heH €EH
= X&) S~ ST = B (ol b)
heH

a,b € where we have used that = - or g € .15 . . erefore is
(a,b € G), wh h d that x(g) = x(¢7?) for g € G [I, (2.15), p. 20]. Therefore, BY
Hermitian. 0O

Put C} := C(G/H)/ker B}, where ker BY, := {z € C(G/H) : BY(z,y) = 0 for all y €
C(G/H)} Then BY, induces a well-defined form By, on C¥ given by BY ( y) = BX(z,y) (z,y €
C(G/H)), where here and below we use T to denote the coset x + ker BX (context should keep any
confusion from arising over this notation and the usual notation for complex conjugate which we
also use). By 1.1, ker BY; is closed under the action of G and so we have a well-defined action of G
on C¥. Clearly, BY is G-invariant.

For characters ¢ and ¢ of G, one defines (¢, p)g = ﬁ ZhGHw(h)m [I, (2.16), p. 20]. We
denote the principal character of G by 1 (so 1(g) =1 for all g € G).

1.2 Theorem.

(1) dimc Cy = x(e)(x, u
(2) The form B}, is positive definite.

Proof. Let a1H,...,a,H be the distinct left cosets of H in G. Then {a;H : 1 <1i < n} is a basis
for C(G/H). Let A be the n x n-matrix with (i, j)-entry B} (a;H,a;H)/|G : H|, where |G : H| is
the index of H in G. (So A is |G : H|™! times the matrix of the form B} relative to the above
basis.) We claim that A2 = A. The (i, j)-entry of A? is

|G : H]_zzBE(aiH, apH)B)\ (axH,a;H) = |G\2 Z (Z “Laph ) <ZX (a; 'a;l) )

k=1 heH leH
= fél Z Z x(axha; x(ajlh " at).
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Replacing aih_la,zl with g we have X(ajlh_lalzl) = X(ajlai_lg) = X(gajlai_l), so the expression
above becomes
-1

gajlai \G| ZX ajla

leH geG leH

using the Generalized Orthogonality Relation [I, p. 19, (2.13)]. Since X(ajlafl) = X(a;lajl), this

last expression is BY (a;H,a;H)/|G : H|, which is the (i, j)-entry of A. Thus, A? = A as claimed.
Now A is Hermitian by 1.1, so it is similar to a diagonal matrix with the eigenvalues of A along

the main diagonal. But since A2 A, an eigenvalue of A is either 1 or 0. Hence, the rank of A is

equal to the trace of A. But

1
A= ZBX a;H,a;H) = ZZ |H| Zx(h)zx(e)(% D

i=1 heH heH
Since dim¢c C} = rank A, (1) follows.

Finally, by the preceding paragraph, the form B on C(G/H) is positive semidefinite, so that
the induced form B} on CY is positive definite. This proves (2). O

We shall call G an o-basis group if for every H < G and x € Irr(G) the vector space C}; has
a basis that is orthogonal relative to B}EI consisting entirely of elements of the form aH (a € G).
Such a basis shall be called an o-basis of C};.

1.3 Corollary. The following are equivalent:
(1) G is an o-basis group.
(2) For each H < G and each x € Irr(G), there exist at least x(e)(x,1)n cosets of H in G that
are mutually orthogonal relative to BY;.
(3) For each H < G and each nonlinear x € Irr(G) with (x,1)u # 0, there exist at least
x(e)(x,1)u cosets of H in G that are mutually orthogonal relative to BY.

Proof. We first observe that for every a,b € G,

BY(aH,bH) = BY(aH,bH)
so that aH and bH are orthogonal relative to B}; if and only if aH and bH are orthogonal relative
to BY.

Assume that G is an o-basis group and let H < G and x € Irr(G). There exists an o-basis
{a1H,...,atH} (possibly empty with ¢t = 0) of C%. By 1.2, t = x(e)(x,1)n and, by the above
argument, a1 H,...,a;H are mutually orthogonal relative to By,. This shows that (1) implies (2).

That (2) implies (3) is obvious.

Finally, assume (3) holds. Let H < G and x € Irr(G). If (x,1)y = 0, then dimC}, = 0, so the
empty set is an o-basis of C};. Assume that (x, 1)y # 0. Note that in particular,

o x(e

By(aH.af) = 9 3 y(h) = x(e)x. Vi 0
i

so that aH # 0 for all @ € G. If y is linear, then dimC¥ = 1, so {H} is an o-basis of C};. Assume

that x is nonlinear. By assumption, there exist ¢ = x(e)(x,1)y cosets a1 H,. tH that are

mutually orthogonal relative to By;. Then {a1H,...,a;H} is orthogonal relative to B and, since

a;H # 0 for each 4, this set is linearly independent and hence an o-basis of C}; (using 1 2). O

Remarks. (1) Since the irreducible characters of an abelian group are all linear, it follows vacuously
from condition (3) of 1.3 that every abelian group is an o-basis group.
(2) In view of 1.3, the proof of Theorem 3.1 in [HT] shows that if G is a dihedral group of order
¥ (k > 0), then G is an o-basis group. (See also [HT, Remark 2, p. 27].) We shall recover this
result as a special case of 3.1 below.
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x(e)(x,1)g — 1 cosets aH for which ), x(ah) = 0. In particular, each x € Irr(G) has at least

1.4 Proposition. Let G be an o-basis group. For each H < G and x € Irr(G) there exist at least
(
x(e)? — 1 zeros.

Proof. Let H < G and x € Irr(G). If (x, 1)z = 0, then the claim is vacuously satisfied, so assume
(x,1)m # 0. By assumption and 1.3 there exist t = x(e)(x, 1)y cosets a1 H,...,a;H that are
mutually orthogonal relative to B}. By the G-invariance of B} (1.1), we may assume that a; = e.
For each 1 < 7 <t we have

0=BY(a1H,a;H) = ng) Z x(a;h)

and this proves the first statement. The second statement follows by letting H = {e}. O

In the remainder of this section, we study the o-basis group property as it relates to homomorphic
images.

Let N<G, let x € Irr(G) and assume that N C ker . Put G := G/N and denote by a the image
of a € G under the canonical epimorphism G — G. The function ¥ : G — C given by x(a) = x(a)
is a well-defined irreducible character of G [, (2.22), p. 24]. Let H be a subgroup of G.

1.5 Proposition. Let the notation be as above. The linear map ¢ : C3y — Cl’g given by p(aH) = aH

is a well-defined linear isometry. In particular, C}; has an o-basis if and only if C;f[ has an o-bastis.

Proof. Put I = HN N and let hql,..., h,I be the distinct elements of H/I. By an isomorphism
theorem, H = H/I and hy, ..., h, are the distinct elements of H.
Let a,b € G. Using that x is constant on each coset of I, we get

BY,(aH,bH) = x(e) 3" x(a~oh) = X(f) ix(a_lbhi)

H| &, [H 1| =

RE) & . i5s aty
= X a~'bh;) = BX (aH,bH

] 2 X(@1bho) = B (al,bA)

In particular, the linear map C(G/H) — C(G/H) given by aH — aH sends the kernel of B}, into
the kernel of Bz so that ¢ is well-defined. Clearly ¢ is surjective. Finally, if x € ker ¢, then

so that z = 0 since By is definite (1.2). It follows that ¢ is injective. [
1.6 Corollary. The class of o-basis groups is closed under taking homomorphic images.

Proof. Let G be an o-basis group and let N be a normal subgroup of G. By the First Isomorphism
Theorem it suffices to show that G := G/N is an o-basis group.

Let H < G and let ¢ € Irr(G). With x : G — C defined by x(a) = x(aN), we have x € Irr(G)
and N C kerx. Also, H = H/N for some H < G (with H D N). By assumption, C}; has an
o-basis, so Cl’g has an o-basis as well by 1.5. O
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2. ORTHOGONAL BASES OF SYMMETRIZED TENSOR SPACES

In this section, we study connections between the notion of an o-basis group and the existence
of special bases (called o-bases) of symmetrized tensor spaces.

Fix positive integers m and n and put ', ,,, = {y € Z" : 1 <~; < m}. Let G be a subgroup
of the symmetric group S,. There is a right action of G on Iy, , given by vo = (Y1), - - Vo (n))
(y€Tpm, o €G).

Let V be a complex inner product space of dimension m and let {eq,..., e, } be an orthonormal
basis of V. To avoid trivialities, we assume that m > 2. Denote by V®" the n-fold tensor power of
V.Fory €Tl m, put ey =€y, @+ Qe € VO Then {e, : v €L,,} is a basis for V&

Let x € Irr(G). The symmetrizer relative to y is the element of the group algebra CG of G given
by sX := % > veq X(0)o. For vy € Ty, put X := sXe,, where we view V®™" as a left CG-module
via ey = e,,-1 (0 € G). We shall refer to eX as a standard symmetrized tensor (some authors use
the term decomposable tensor).

The inner product on V induces an inner product on V®™, If W is a subspace of V®™" then an
orthogonal basis of W consisting entirely of standard symmetrized tensors shall be called an o-basis
of W (relative to G).

Choose a set A of representatives of the orbits of Iy, ,,, under the right action of G' given above.
Then V®™ = @ VX (orthogonal direct sum), where V.X := (eX, : ¢ € G) and the sum is over all
x € Irr(G), v € A (cf. [F], [M]).

2.1 Theorem. If G is an o-basis group and ¢ : G — S,, (n € N) is a homomorphism, then V"
has an o-basis relative to p(G).

Proof. Let G be an o-basis group and let ¢ : G — S, (n € N) be a homomorphism. Put J = ¢(G)
and fix ¢ € Irr(J) and v € 'y, . It is enough to show that va has an o-basis (relative to J).
Set H = ¢~ 1(J,), where J, is the stabilizer of v under the right action of J on I'y,,,. Also, put
X = ¥ o ¢ € Irr(G). By the definition of o-basis group, C¥ has an o-basis {a1H,...,a;H} and by
1.2, t = x(e)(x, ) g. Put 6; = p(a;)~'. We claim that {ef‘gi : 1 <4 <t} is an o-basis of V¥. For
1<14,7 <t, we have

BY(a;H,a;H) = T;Ieﬁ Z X(afl ¢<e) Z »(0; 0 1o ( ~6; 9_1,6%) = (e igi,eﬁej),

heH ocJy

where the next to the last equality is from [F, p. 339]. The equation above with j = i shows that

each e%i is nonzero (using definiteness of BY, (1.2)). On the other hand, the equation above with

j # i shows that the vectors efgi are mutually orthogonal. In particular, the set {e%i 1 <i<t}

is linearly independent. Also, by [F, p. 339],

dimc V,Yw

\H\ Z x(h) =x(e)(x,)g =t,

oedy heH

so the theorem follows. [

2.2 Corollary. The following groups are not o-basis groups:

(1) any dihedral group D,, (of order 2n) with n not a power of 2,

(2) any 2-transitive subgroup of S, with n > 3 (e.g., the alternating group A,, n > 4 and the
symmetric group Sy, n > 3),

(3) any finite simple group of Lie type.
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Proof. Let G be one of the groups in the list above. In view of 2.1, it is enough to find a homo-
morphism ¢ : G — S, for some n such that V®" does not have an o-basis relative to ¢(G).

Case (1) is given in [HT, Corollary 3.3, p. 27] with ¢ : D,, — S,, the natural embedding, case
(2) is given in [H, Theorem, p. 242] with ¢ : G — S, the inclusion map, and case (3) is given in
[A, Theorem 5.1, p. 428] with ¢ : G — S,, the embedding induced by the natural action of G on
G/B, where B is a Borel subgroup and n = |G : B|. O

The converse of 2.1 does not hold in general since it is possible to have a group homomorphism
¢ : G — S, such that V®" has an o-basis relative to ¢(G) with G not an o-basis group. (Indeed,
one can let G be any of the groups in 2.2 and let ¢ : G — S,, (any n) be the trivial homomorphism.
Then the identity map on V®" is the sole symmetrizer and {e, : v € I';, ,,,} is an o-basis of V&"
relative to ¢(G) = {e}.) However, the next theorem provides a characterization of o-basis group
expressed in terms of symmetrized tensors. In its statement, the Cayley embedding ¢ : G — S,, is
the homomorphism that takes g € G to the permutation ¢(g) on G given by ¢(g)(h) = gh (h € G),
this permutation being viewed as an element of S,,, where n = |G|.

2.3 Theorem. Let G be a finite group, let n = |G|, and let ¢ : G — S,, be the Cayley embedding.
Then G is an o-basis group if and only if VE™ has an o-basis relative to o(G).

Proof. One implication follows from 2.1. Now assume that V®" has an o-basis relative to p(G).
Fix H < G and x € Irr(G). We view I'y, ,,, as the set of functions from G to {1,...,m} using the
same one-to-one correspondence G — {1,...,n} by which we identify the symmetric group on G
with S,,. Define v € T';, ,,, by
1, ifged,
79_{2, if g ¢ H.

Then clearly the stabilizer of v in G is H. Put ¢ = x o cp_1|@(G) € Irr(p(G)). By assumption (and
the orthogonal direct sum decomposition given before 2.1), Vv‘p has an o-basis, that is, there exist

Ji,...,0¢ € G with t = dimg Vj’ such that {efybv(g_) : 1 <4 <t} is an orthogonal basis of Vx. The

computations in the proof of 2.1 show that for 1 < 4,5 < ¢, BE(Q;IHMQJIH) = (e%(g,),e%(g_))
i j

and that dimc Vj’ = x(e)(x,1)m, so, arguing as in that same proof and in view of 1.2 {g{lﬂ :
1 <i<t}isano-basisof Cf. O

3. A SUFFICIENT CONDITION AND EXAMPLES

In the first theorem of this section we consider a certain class of p-groups and show that its
members are o-basis groups. This theorem is used in 3.2 to provide a list of familiar groups that
are o-basis groups.

3.1 Theorem. Let G be a finite p-group (p, prime) and assume that G has an abelian normal
subgroup A and a cyclic normal subgroup C' with C C A satisfying |G : A < p and |A : C| < p.
Then G is an o-basis group.

Proof. We verify the characterization of o-basis group given in 1.3. Let H < G and x € Irr(G) with
x nonlinear and (x, 1)y # 0. Note that since x is nonlinear, G is nonabelian so that |G| > p? and
C # {e}. A quotient of G clearly satisfies the hypotheses of the theorem so we assume, without
loss of generality in view of 1.5, that y is faithful.

We claim that HNC = {e}. Let J = HNC. Now J is a characteristic subgroup of C' (as is any
subgroup of C since C' is cyclic) and C' is a normal subgroup of G. Hence, J is a normal subgroup
of G. Since (x, 1)y # 0, it follows that (x,1)s # 0. Then [I, (6.7), p. 81] says that J C ker x = {e}.
Thus H N C = {e}, as claimed.
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We now claim that |H| is either 1 or p. Since H N C = {e}, we have |H||C| = |[HC| < |G|.
Now |C| = |G|/|G : C| > |G|/p?, so |H| < p?. Moreover, |H| divides |G| which is a power of p, so
|H| € {1,p,p*}. Suppose that |H| = p?. Then |G : A| = p =|A: C|. In particular, |H N A| = p so
that HN A = (h) for some h € H. Moreover, H € A so there exists some x € H — A. Then clearly
G = (C,h,z). Now H is abelian since it has order p?, so it follows that h is in the center Z(G) of
G. Now G acts by conjugation on C' and hence fixes a nonidentity element ¢ of C' [Hu, Lemma 5.1,
p. 93]. Thus Z(G) contains (c) x (h). But this contradicts that Z(G) is cyclic since  is faithful [I,
(2.32), p. 29]. We conclude that |H]| is either 1 or p, as claimed.

By Ito’s Theorem [I, (6.15), p. 84], x(e) divides |G : A| which is either 1 or p. We are assuming
that x is nonlinear, so we have y(e) = p and |G : A| = p. Let X be an irreducible constituent of x 4.
Since A is abelian, we have A(e) = 1. Frobenius Reciprocity gives (x, A%)g = (x,A\)a > 1. Since x
and A\¢ both have degree p, we conclude that y = \©.

For later use, we observe that A\¢ is faithful. Indeed, ker A¢ is a characteristic subgroup of C
and hence a normal subgroup of G so that

ker Ac = ) (ker A\c)” C () (ker \)” = ker A = ker y = {e}
zeG zelG

using [I, (5.11), p. 67] and the fact that x is faithful.

Let N = CNZ(G). Assume for the moment that N # C. The conjugation action of G on C
induces a well-defined action of G on C'/N given by (¢N)* = ¢*N for ¢ € C, z € G. According
to [Hu, Theorem 5.2, p. 93], this action fixes the elements of a subgroup of order p, which can be
expressed in the form D/N with D a subgroup of C' containing N.

So far, D is defined if N £ C. If N = C, put D = A and note that C # A, for otherwise, N = A
and the inertia subgroup of A is G, contradicting that A¢ = y is irreducible by [I, (6.1), p. 95]. We
have that D is a normal subgroup of G and |D : N| = p.

We claim that xp = Zf;ol 7n;, with the n; distinct linear characters of D. If N = C, then this
follows from [I, (6.19), p. 86], so now assume that N # C. By Mackey’s Theorem [I, (5.6), p. 74],

XD = Z?;ol )\g, where G/A = (zA). Let 0 < i < j < p and assume that \} = )\%j. It suffices to
show that i = j. We have D/N = (dN) for some d € D — N. Then A(*'d) = \*' (d) = \” (d) =
/\(’”j d), which implies that @' = % since A¢ is faithful. Therefore, @’ 'd = d. If i # j, then
0<j—i<p,s0oG=(z7"" A) and it follows that d € Z(G)NC = N, a contradiction. Thus, i = j.
Our claim follows by putting 7; := )\g (0 <i<p).

Next, we show that x vanishes on D — N. By Clifford’s Theorem [I, (6.2), p. 79], we have
x~N = pu for some linear character u of N. With the notation as in the preceding paragraph we

have
p—1

> (wmi)n = (1, X)x =p

1=0

and, since each (p,7;)n is at most one, it follows that (u,7;)y = 1 for all 4. Therefore, (u”,n;)p =
(i, m;)n = 1 for all i, where we have used Frobenius Reciprocity. Since puP has degree p, it follows
that xp = u” and so x vanishes on D — N by the definition of the induced character [I, (5.1), p.
62] and the normality of N.

Define natural numbers s and ¢ as follows:

), if |[H] =1,
), if |[H|=p,H C A,
), if|H|=p,HZ A.

(p,
(Svt) = (17

P
p
(p,1
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Since |H| is either 1 or p, as observed earlier, this defines s and ¢ in all cases.

As above, we have G/A = (zA) and D/N = (dN) for some = € G and d € D. We shall show
that the cosets d'z/H (0 < i < s, 0 < j < t) are mutually orthogonal with respect to B},. Let
0<i,k<sand0<jl<tand assume that (i,7) # (k,l). First suppose that j # . Then ¢ # 1,
so H C A. Therefore, for each h € H, we have = 7d*‘alh = 2! Tz~ td*~ixlh € 2!7A C G — A.
Now x = A% and A is a normal subgroup of G, so by the definition of the induced character, y
vanishes on G — A, so

(*) BY(d'a’H,d"z' H) = T}Ie’) 3 x(@idiath) = 0.
heH

Now suppose that j = [. Then ¢ # k. In particular, s # 1, so that H N A = {e}. It follows that
rId*"izih € G — A for h € H — {e}, while z77d* 27 € D — N. We have noted that x vanishes
on G — A and on D — N, so (*) is valid in this case as well.

Now we show that x(e)(x, 1)y = st. If |[H| = 1, then both sides of this equation equal p?. Now
assume that |H| # 1, so that |H| = p.

We claim that x(h) =0 foralle # h e H. If H ¢ A, then HN A = {e} and the claim follows
since y vanishes on G — A. Now assume that H C A. The socle of A is ZH where Z is the subgroup
of C of order p (recalling that C' # {e} by the first paragraph of the proof). Now as the socle, ZH
is characteristic in A and hence normal in G. As above, we have G/A = (zA) for some = € G.
The conjugation action of z on ZH fixes the elements of Z and hence induces an action on ZH/Z,
which must be the trivial action. Writing H = (h), we have “h = zh for some z € Z. Moreover,
z # e. (Otherwise, we get H <G so that our assumption (x, 1)y # 0 implies that H C ker x [I,
(6.7), p. 81] contrary to the fact that y is faithful.) By induction, *'h = z*h for all 0 < i < p.
Therefore, using Mackey’s Theorem, we obtain

=3 N () =3 AR =AY ) =
1=0 i 7

the last equality due to the fact that A(z) is a primitive pth root of unity (using that A¢ is faithful
as observed above). Since h was an arbitrary generator of H, it follows that x(h) = 0 for all
e # h € H, as claimed.

Finally, according to the previous paragraph, we have

(X x(e) =1
[H]| ,;I |H *

(still assuming that |H| # 1), so that x(e)(x,1)mw = p = st, as desired. This completes the

proof. O

3.2 Corollary. The following groups are o-basis groups (p, prime, n > 1):

) any finite abelian group,
the dihedral group Don,
the quaternion group QQan,

the semidihedral group Son,
1+pn72>

?
any group of order p3,
any extra-special p-group.

(1
(
(
(
(
(
(

2)
3)
4)
5) the group with presentation (z,a|xzP =1 = a’pnfl,aw =a
6)
7)
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Proof. Let G be one of the groups in (1-5). According to [R, 5.3.4, p. 136], G is a p-group with a
cyclic maximal subgroup, say C. Therefore, G satisfies the hypotheses of 3.1 with A = C.

Next we prove (6). Let G be a group of order p®>. Then G has a nontrivial center [R, 1.6.14,
p. 39] and hence a normal subgroup C of order p, which is necessarily cyclic. By the First Sylow
Theorem, G has a subgroup A of order p? containing C. By reason of order, A is abelian and,
again by the First Sylow Theorem, A is normal. The hypotheses of 3.1 are satisfied and therefore
G is an o-basis group.

Finally, we prove (7). Let G be an extra-special p-group. Then, by definition, G’ = Z and
|Z| = p, where G’ is the commutator subgroup of G and Z is the center of G. We shall use the
characterization of o-basis group given in 1.3. Let H < G and x € Irr(G) with x nonlinear and
(x,1)g # 0. According to [K, Theorems 2.17 and 2.18, pp. 812-813], |G| = p?"*! for some r > 1,
x(e) = p", x is faithful, and y vanishes on G — Z. Since Y is faithful, we have HNZ = {e} (arguing
as in the second paragraph of the proof of 3.1). Since x vanishes on G — Z, we get

O Du o

- 2 X = = i

Therefore, t := x(e)(x, 1)y = p*"/|H| = |G : ZH|. Let a1ZH,...,a;ZH be the distinct cosets of

ZH in G. Then the cosets a1 H, ..., a; H are mutually orthogonal relative to By. Indeed, for i # j

and h € H, we have a; *ajh € G — Z so that x(a; *ajh) = 0 and therefore BY (a;H,a;H) = 0.
Thus G is an o-basis group by 1.3. O

Remarks. 1t was noted earlier that (1) follows trivially from 1.3 and that (2) followed from [HT].
Since a nonabelian group of order p3 is extra-special [R, 5.3.8, p. 141], (6) also follows from (7) and

(1).
In view of 3.2, one might suspect that every finite p-group is an o-basis group. Our final example
shows that this is not the case, however.

Example. We exhibit a group of order 3% that is not an o-basis group. For each i € {1,2,3,4}
let C; = (¢;) be a cyclic group of order 3. There is an action of the group Cy on the group
N := C; x Cy x C3 uniquely determined by ¢]* = c2, ¢5* = c3, ¢3' = ¢1, where we view C; < N
(1 € {1,2,3}) in the usual way. Let G be the semidirect product N x Cy relative to this action (so
in fact G is the wreath product G = Z3z wr Z3). Then |G| = 3*. Let A be the linear character of
N satisfying A(c1) = €, A(c2) = 1 = X(c3), with €6 = 1, € # 1, and let x be the induced character
AG. Since A% (c1) = Aci*) = Mez) =1 # € = A1), it follows that the inertia group of A is N.
Therefore, x is irreducible [I, (6.1), p. 95]. By Clifford’s theorem [I, (6.2), p. 79], xny = A+ A% A4,
In particular, we have
X(e' ey e) = € e 4 e

(i; € {0,1,2}). Let H = C3 < N. From the formula above, we get

\H] Z x(citc2h) = € + €2
heH

for i; € {0,1,2}. We see that this quantitiy is never zero, for if it were, we would have 1 = (¢1)? =
(—€2)3 = —1. It follows that for any a,b € N, BX(aH,bH) # 0. Let a1H,...,a;H be a set of
mutually orthogonal cosets relative to Bj. Then these cosets must lie in distinct cosets of N in G.
Indeed, suppose a;H,a;H C aN for some a € G with i # j. Then using G-invariance of By (1.1),
we have 0 = BY(a;H,a;H) = B (a 'a;H,a 'a;H), which is a contradiction as a 'a;,a 'a; € N.
We conclude that ¢t < |G : N| = 3.

On the other hand, the formula above gives x(e)(x,1)g = 6. Therefore, G is not an o-basis
group by 1.3.
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